Trapped on Technology’s Trailing Edge

We’re paying too much to deal with obsolete electronic parts

13 min read
Photo of a man front of a tall shelf of boxes.

Not Grandma's Attic: An employee fills an order for a discontinued semiconductor product at a Rochester Electronics distribution center in Newburyport, Mass.

Photo: Bob O’Connor

Keeping aging systems on their feet is a daunting and resource-intensive task. The U.S. Air Force, for example, continually wages an internal battle to keep its weapons systems in fighting form. One enormous and often overlooked factor contributing to the early demise of military technologies is the problem of unavailable parts. Take the B-2 Spirit, a stealth bomber that first flew in 1989: by 1996, significant components of the aircraft's defensive management system, just one small part of its electronics, were obsolete. Repairing the system entailed either redesigning a few circuit boards and replacing other obsolete integrated circuits for US $21 million, as the B-2 program officers chose to do, or spending $54 million to have the original contractor replace the whole system. The electronics, in essence, were fine—they just couldn't easily be fixed if even the slightest thing went wrong.

Although mundane in its simplicity, the inevitable depletion of crucial components as systems age has sweeping, potentially life-threatening consequences. At the very least, the quest for an obsolete part can escalate into an unexpected, budget-busting expense. Electronics obsolescence—also known as DMSMS, for diminishing manufacturing sources and material shortages—is a huge problem for designers who build systems that must last longer than the next cycle of technology. For instance, by the time the U.S. Navy began installing a new sonar system in surface ships in 2002, more than 70 percent of the system's electronic parts were no longer being made. And it's not just the military: commercial airplanes, communications systems, and amusement-park rides must all be designed around this problem, or the failure of one obsolete electronic part can easily balloon into a much larger system failure.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Engineers Are Working on a Solar Microgrid To Outlast Lunar Nights

Future lunar bases will need power for mining and astronaut survival

4 min read
A rendering of a lunar base. In the foreground are rows of solar panels and behind them are two astronauts standing in front of a glass dome with plants inside.
P. Carril/ESA

The next time humans land on the moon on the moon, they intend to stay awhile. For the Artemis program program, NASA and its collaborators want to build a sustained presence on the moon, which includes setting up a base at which astronauts can live and work.

One of the crucial elements for a functioning lunar base is a power supply. Sandia National Laboratories, a research and development lab that specializes in building microgrids for military bases, is teaming up with NASA to design one that will work on the moon.

Keep Reading ↓ Show less

Trilobite-Inspired Camera Boasts Huge Depth of Field

New camera relies on "metalenses" that could be fabricated using a standard CMOS foundry

3 min read
Black and white image showing different white box shapes in rows

Scanning electron microscope image of the titanium oxide nanopillars that make up the metalens. The scale is 500 nanometers (nm).

NIST

Inspired by the eyes of extinct trilobites, researchers have created a miniature camera with a record-setting depth of field—the distance over which a camera can produce sharp images in single photo. Their new study reveals that with the aid of artificial intelligence, their device can simultaneously image objects as near as 3 centimeters and as far away as 1.7 kilometers.

Five hundred million years ago, the oceans teemed with horseshoe-crab-like trilobites. Among the most successful of all early animals, these armored invertebrates lived on Earth for roughly 270 million years before going extinct.

Keep Reading ↓ Show less

Harnessing the Power of Innovation Intelligence

Through case studies and data visualizations, this webinar will show you how to leverage IP and scientific data analytics to identify emerging business opportunities

1 min read
Clarivate
Clarivate

Business and R&D leaders have to make consequential strategic decisions every day in a global marketplace that continues to get more interconnected and complex. Luckily, the job can be more manageable and efficient by leveraging IP and scientific data analytics. Register for this free webinar now!

Join us for the webinar, Harnessing the power of innovation intelligence, to hear Clarivate experts discuss how analyzing IP data, together with scientific content and industry-specific data, can provide organization-wide situational awareness and reveal valuable business insights.

Keep Reading ↓ Show less