Lidar-Equipped Autonomous Wheelchairs Roll Out in Singapore and Japan

No more waiting for an orderly to see you out, or an attendant to see you to your gate

3 min read

Photo: Panasonic
The Uber of Wheelchairs: At Haneda Airport in Tokyo, people with disabilities will be able to hail autonomous wheelchairs using a smartphone app that lets them select a destination, sit back, and relax.
Photo: Panasonic

Autonomous vehicles can add anew member to their ranks—the self-driving wheelchair. This summer, two robotic wheelchairs made headlines: one at a Singaporean hospital and another at a Japanese airport.

The Singapore-MIT Alliance for Research and Technology, or SMART, developed the former, first deployed in Singapore’s Changi General Hospital in September 2016, where it successfully navigated the hospital’s hallways. It is the latest in a string of autonomous vehicles made by SMART, including a golf cart, an electric taxi, and most recently, a scooter that zipped more than 100 MIT visitors around on tours in 2016.

The SMART self-driving wheelchair has been in development since January 2016, says Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory and a principal investigator in the SMART Future Urban Mobility research group. Today, SMART has two wheelchairs in Singapore and two wheelchairs at MIT being tested in a variety of settings, says Rus.

The robot’s computer uses data from three lidars to make a map. A localization algorithm then determines where the smart chair is on the map. The chair’s six wheels lend stability, and the chair is designed to make tight turns and fit through normal-size doorframes. “When we visited several retirement communities, we realized that the quality of life is dependent on mobility. We want to make it really easy for people to move around,” said Rus in a recent MIT statement.

A second autonomous wheelchair recently premiered at Haneda Airport in Tokyo, designed by Panasonic and Whill, creator of the Model A Whill wheelchair, a sleek, high-tech wheelchair now on the market in Japan and the United States.

Panasonic is planning to conduct technical trials with five Whill Model M chairs at Haneda Airport this year, says Panasonic spokesperson Mio Yamanaka. Like the SMART wheelchair, the Whill Model M uses lidars (two, in this case) to detect nearby obstacles. It also employs automation technology developed for ­Panasonic’s autonomous (and adorable) hospital delivery robot, Hospi. “The routes are created based on the prepared map information and its position information,” says Yamanaka. Then, an onboard computer decides the best route based on the chair’s position. Users choose their destination via smartphone app and can even hail a chair using the app—the Uber of wheelchairs.

The Whill Model M is also able to sync with nearby wheelchairs to travel in a column, which is useful for a family or a group, the company notes. Best of all, each wheelchair automatically returns to its home base, reducing the need for airport staff to collect the chairs. ­Panasonic hopes to expand use of the chair to large indoor facilities such as shopping centers, says Yamanaka.

Beyond hospitals and airports, the SMART team says it envisions a connected autonomous mobility system, where a user could use a scooter or wheelchair indoors at an office, zip outside and pick up a golf cart to cross the parking lot, and slip into an autonomous car to drive home. Recent studies with the scooter suggest the control algorithms work indoors as well as out, according to a press release last year. “The autonomous wheelchair could be very useful in any pedestrian environment—­including hospitals and airports—and we are exploring all these possibilities,” Rus tellsIEEE Spectrum.

Yet the field faces the challenge of commercialization. Not all high-tech wheelchairs have sold well, such as Dean Kamen’s stair-­climbing iBot, whose US $25,000 price tag was one reason the device was discontinued in 2009. But hopefully the next generation of wheelchairs won’t be as expensive, says Rus. “The system consists of an off-the-shelf wheelchair augmented with an autonomy package. We hope the price point of the autonomy package can come down to make the system affordable.” What may also help is that the Whill Model M has been granted clearance as a medical device by the U.S. Food and Drug Administration. That means doctors can prescribe the chair for their patients and at least part of the cost will be picked up by insurers.

A version of this article appears in our blog The Human OS.

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions