Close

Tiny Walking Robots Powered by Muscle Cells

These robots are made of itty bitty little pieces of you

2 min read
Tiny Walking Robots Powered by Muscle Cells
Illustration: UIUC

Most robots are powered by electrical motors that are big, bulky, heavy, and if they break, you have to replace them. Animals, on the other hand, use a biological motor—a muscle—that also requires electricity, but is far more efficient and, given a chance, can repair itself. We're just starting to be able to manipulate biological structures like these in clever enough ways to let us harness their awesomeness, and engineers at the University of Illinois at Urbana-Champaign have worked them into a tiny little "bio-bot" that uses muscle cells to walk.

The backbone of this robot is made of hydrogel, although it acts more like a combination of bone and tendon, providing both structure and flexibility. The muscle is anchored to hydrogel feet, and when external electrical impulses cause the muscle to contract, the feet get pulled together, and the bio-bot walks.

This is all very early stage research, and what's most exciting is how these little guys can be evolved into more sophisticated robots with all the things that you'd want in a robot. Like, say, steering, which could be accomplished by integrating neurons that would drive separate muscles and respond to chemical gradients or changes in light. Long term, things might get even cooler:

“It's only natural that we would start from a bio-mimetic design principle, such as the native organization of the musculoskeletal system, as a jumping-off point,” said graduate student Caroline Cvetkovic, co-first author of the paper. “This work represents an important first step in the development and control of biological machines that can be stimulated, trained, or programmed to do work. It's exciting to think that this system could eventually evolve into a generation of biological machines that could aid in drug delivery, surgical robotics, 'smart' implants, or mobile environmental analyzers, among countless other applications.”

[ LIBNA ] via [ UIUC ]

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

This article is part of our special report on AI, “The Great AI Reckoning.

"I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less