Tiny Robot Makes Big Jumps with Explosive Microrockets

Watch these millimeter-sized robots jump huge distances with springs and chemical engines

2 min read
Tiny Robot Makes Big Jumps with Explosive Microrockets

We've seen all kinds of crazy jumping robots, from humanoids to grasshoppers to soft and flexible spheres. But when you start making small robots, like seriously small robots (on the millimeter scale), you have to find new ways to get them to jump, and the Army Research Laboratory has teamed up with the University of Maryland to develop a couple clever ideas.

Pictured above is a four millimeter-long robot, complete with a power source, an integrated control system, and light sensors. To move, it relies on on the rapid conversion of stored chemical energy to gas in a chemical reaction, which is just a fancy way of saying either "rocket motor" or "controlled explosion." Underneath the robot is a small chip of nanoporous silicon that gets infused with a sodium perchlorate oxidizer, and when a current heats up the chip, it ignites, propelling the robot upward. Initial tests have yielded a jump height of about eight centimeters, which doesn't sound like much, but the robot is so small that it's still outjumping its own size by a factor of 20.

The other jumping bot that these researchers have come up with is a bit more traditional, using microfabricated elastomer springs to store up energy and release it all at once to make a jump. This method may be a bit less violent than the rocket-powered bot, but the spring robot depends on an external power source (a dude pushing the spring down with tweezers). With this human help (which will eventually replaced by micromotors to wind the spring up) it can jump really, really high, at about 80 times its own height. You can see both of these robots in action in the video below: 

The next step for these robots is to tweak them to be able to jump more than once, and in the direction that you want them to go. Oh, and to figure out how to get them to land properly, and then do productive stuff once they return to Earth. For the chemical jumping robot, adding little nozzles to the chemical engine should solve the steering problem while also quadrupling its effective power by directing the thrust more efficiently. Stitching an array of about 100 of these engines together along the bottom of a microbot could allow for a whole series of jumps (and even jumps followed by mid-air rocket pulses to keep flying), ultimately resulting in a range of some 65 meters, which works out to be a staggering 16,000 times the length of the robot itself. Not bad at all.

Ultimately, the idea is that these bots will be fast and cheap to manufacture, easy to deploy, and expendable enough that it'll be possible to use swarms of them for things like surveillance and monitoring and terrorizing your imagination.

"First Leaps Toward Jumping Microrobots" by Wayne A. Churaman, Aaron P. Gerratt, and Sarah Bergbreiter from the Army Research Laboratory and the University of Maryland Microrobotics Lab was presented this week at the IEEE International Conference on Intelligent Robots and Systems.

[ UMD Microrobotics ]

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less