Throwable Robot Car Always Lands on Four Wheels

Just by spinning its wheels, this car can stabilize itself in mid-air in 402 milliseconds

4 min read

West Point AGRO robot
Developed at the U.S. Military Academy at West Point, AGRO uses its wheels, which are independently driven and steerable, as reaction wheels to stabilize and reorient itself mid-air.
Image: Robotics Research Center/West Point

Throwable or droppable robots seem like a great idea for a bunch of applications, including exploration and search and rescue. But such robots do come with some constraints—namely, if you’re going to throw or drop a robot, you should be prepared for that robot to not land the way you want it to land. While we’ve seen some creative approaches to this problem, or more straightforward self-righting devices, usually you’re in for significant trade-offs in complexity, mobility, and mass. 

What would be ideal is a robot that can be relied upon to just always land the right way up. A robotic cat, of sorts. And while we’ve seen this with a tail, for wheeled vehicles, it turns out that a tail isn’t necessary: All it takes is some wheel spin.

The reason that AGRO (Agile Ground RObot), developed at the U.S. Military Academy at West Point, can do this is because each of its wheels is both independently driven and steerable. The wheels are essentially reaction wheels, which are a pretty common way to generate forces on all kinds of different robots, but typically you see such reaction wheels kludged onto these robots as sort of an afterthought—using the existing wheels of a wheeled robot is a more elegant way to do it.

Four steerable wheels with in-hub motors provide control in all three axes (yaw, pitch, and roll). You’ll notice that when the robot is tossed, the wheels all toe inwards (or outwards, I guess) by 45 degrees, positioning them orthogonal to the body of the robot. The front left and rear right wheels are spun together, as are the front right and rear left wheels. When one pair of wheels spins in the same direction, the body of the robot twists in the opposite way along an axis between those wheels, in a combination of pitch and roll. By combining different twisting torques from both pairs of wheels, pitch and roll along each axis can be adjusted independently. When the same pair of wheels spin in directions opposite to each other, the robot yaws, although yaw can also be derived by adjusting the ratio between pitch authority and roll authority. And lastly, if you want to sacrifice pitch control for more roll control (or vice versa) the wheel toe-in angle can be changed. Put all this together, and you get an enormous amount of mid-air control over your robot.

West Point AGRO robotThe AGRO robot features four steerable wheels with in-hub motors, which provide control in all three axes (yaw, pitch, and roll).Image: Robotics Research Center/West Point

According to a paper that the West Point group will present at the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), the overall objective here is for the robot to reach a state of zero pitch or roll by the time the robot impacts with the ground, to distribute the impact as much as possible. AGRO doesn’t yet have a suspension to make falling actually safe, so in the short term, it lands on a foam pad, but the mid-air adjustments it’s currently able to make result in a 20 percent reduction of impact force and a 100 percent reduction in being sideways or upside-down. 

The toss that you see in the video isn’t the most aggressive, but lead author Daniel J. Gonzalez tells us that AGRO can do much better, theoretically stabilizing from an initial condition of 22.5 degrees pitch and 22.5 degrees roll in a mere 250 milliseconds, with room for improvement beyond that through optimizing the angles of individual wheels in real time. The limiting factor is really the amount of time that AGRO has between the point at which it’s released and the point at which it hits the ground, since more time in the air gives the robot more time to change its orientation.

Given enough height, the current generation of AGRO can recover from any initial orientation as long as it’s spinning at 66 rpm or less. And the only reason this is a limitation at all is because of the maximum rotation speed of the in-wheel hub motors, which can be boosted by increasing the battery voltage, as Gonzalez and his colleagues, Mark C. Lesak, Andres H. Rodriguez, Joseph A. Cymerman, and Christopher M. Korpela from the Robotics Research Center at West Point, describe in the IROS paper, “Dynamics and Aerial Attitude Control for Rapid Emergency Deployment of the Agile Ground Robot AGRO.”

West Point AGRO2 robotAGRO 2 will include a new hybrid wheel-leg and non-pneumatic tire design that will allow it to hop up stairs and curbs.Image: Robotics Research Center/West Point

While these particular experiments focus on a robot that’s being thrown, the concept is potentially effective (and useful) on any wheeled robot that’s likely to find itself in mid-air. You can imagine it improving the performance of robots doing all sorts of stunts, from driving off ramps or ledges to being dropped out of aircraft. And as it turns out, being able to self-stabilize during an airdrop is an important skill that some Humvees could use to keep themselves from getting tangled in their own parachute lines and avoid mishaps.

Before they move on to Humvees, though, the researchers are working on the next version of AGRO named AGRO 2. AGRO 2 will include a new hybrid wheel-leg and non-pneumatic tire design that will allow it to hop up stairs and curbs, which sounds like a lot of fun to us.

The Conversation (0)