Three Technologies for Harvesting Ambient Energy

Consumer devices will run longer by pulling power from the environment

3 min read
Three Technologies for Harvesting Ambient Energy
Pulse Powered: A piezoelectric harvester is shown attached to the surface of a bovine heart. The conformable design can harvest enough energy for a pacemaker.
Photo: University of Illinois College of Engineering

We are entering an era when scavenging tiny amounts of power from the environment can power small devices to do extraordinary tasks. The needs of the Internet of Things and the advent of lower-cost components are moving energy-harvesting systems from niche applications to broad-scale practicality.

This was the clear message of a conference sponsored by market research firm IDTechEx, held in Santa Clara, Calif., last November, where seven events took place at once. In addition to energy harvesting and storage, the topics covered were printed electronics, wearable technology, 3-D printing, supercapacitors, the Internet of Things, and graphene. These seemingly disparate fields are tightly linked; for example, as IDTechEx CEO Raghu Das pointed out, wearable devices were a strong driver for energy-harvesting technologies. Throughout the sessions and in the exhibit hall, other linkages were evident: Supercapacitors hold the potential to create highly efficient ways to store and release harvested energy, and 3-D printing plays a big role in creating prototypes and short-run custom production items.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

How Nanotech Can Foil Counterfeiters

These tiny mechanical ID tags are unclonable, cheap, and invisible

10 min read
Close up of a finger with a clear square on it.
University of Florida

What's the largest criminal enterprise in the world? Narcotics? Gambling? Human trafficking?

Nope. The biggest racket is the production and trade of counterfeit goods, which is expected to exceed US $1 trillion next year. You've probably suffered from it more than once yourself, purchasing on Amazon or eBay what you thought was a brand-name item only to discover that it was an inferior-quality counterfeit.

Keep Reading ↓Show less