This Year, Autonomous Trucks Will Take to the Road With No One on Board

The startup TuSimple is deploying tractor-trailers that drive themselves from pickup to delivery

4 min read
Photo of a tractor trailer truck

First in Freight: In 2021, San Diego–based startup TuSimple plans to deploy autonomous trucks that drive themselves from pickup to delivery without anybody on board.

Photo: TuSimple

Companies like Tesla, Uber, Cruise, and Waymo promise a future where cars are essentially mobile robots that can take us anywhere with a few taps on a smartphone. But a new category of vehicles is about to overtake self-driving cars in that leap into the future. Autonomous trucks have been quietly making just as much, if not more, progress toward commercial deployment, and their impact on the transportation of goods will no doubt be profound.

Among nearly a dozen companies developing autonomous trucking, San Diego–based TuSimple is trying to get ahead by combining unique technology with a series of strategic partnerships. Working with truck manufacturer Navistar as well as shipping giant UPS, TuSimple is already conducting test operations in Arizona and Texas, including depot-to-depot autonomous runs. These are being run under what's known as “supervised autonomy," in which somebody rides in the cab and is ready to take the wheel if needed. Sometime in 2021, the startup plans to begin doing away with human supervision, letting the trucks drive themselves from pickup to delivery without anybody on board.

Both autonomous cars and autonomous trucks rely on similar underlying technology: Sensors—typically cameras, lidars, and radars—feed data to a computer, which in turn controls the vehicle using skills learned through a massive amount of training and simulation. In principle, developing an autonomous truck can be somewhat easier than developing an autonomous car. That's because unlike passenger vehicles, trucks—in particular long-haul tractor-trailers—generally follow fixed routes and spend most of their time on highways that are more predictable and easier to navigate than surface streets. Trucks are also a better platform for autonomy, with their large size providing more power for computers and an improved field of view for sensors, which can be mounted higher off the ground.

TuSimple claims that its approach is unique because its equipment is purpose built from the ground up for trucks. “Most of the other companies in this space got the seeds of their ideas from the DARPA Grand and Urban Challenges for autonomous vehicles," says Chuck Price, chief product officer at TuSimple. “But the dynamics and functional behaviors of trucks are very different."

The biggest difference is that trucks need to be able to sense conditions farther in advance, to allow for their longer stopping distance. The 200-meter practical range of lidar that most autonomous cars use as their primary sensor is simply not good enough for a fully loaded truck traveling at 120 kilometers per hour. Instead, TuSimple relies on multiple HD cameras that are looking up to 1,000 meters ahead whenever possible. The system detects other vehicles and calculates their trajectories at that distance, which Price says is approximately twice as far out as professional truck drivers look while driving.

Price argues that this capability gives TuSimple's system more time to make decisions about the safest and most efficient way to drive. Indeed, its trucks use their brakes less often than trucks operated by human drivers, leading to improvements in fuel economy of about 10 percent. Steadier driving, with less side-to-side movement in a lane, brings additional efficiency gains while also minimizing tire wear. Price adds that autonomous trucks could also help address a shortage of truck drivers, which is expected to grow at an alarming rate.

TuSimple uses a combination of lidar, radar, and HD cameras to detect vehicles and obstacles up to 1,000 meters away. Look Ahead: TuSimple uses a combination of lidar, radar, and HD cameras to detect vehicles and obstacles up to 1,000 meters away. Image: TuSimple

TuSimple's fleet of 40 autonomous trucks has been hauling goods between freight depots in Phoenix, Tucson, Dallas, El Paso, Houston, and San Antonio. These routes are about 95 percent highway, but the trucks can also autonomously handle surface streets, bringing their cargo the entire distance, from depot driveway to depot driveway. Its vehicles join a growing fleet of robotic trucks from competitors such as Aurora, Embark, Locomation, Plus.ai, and even Waymo, the Alphabet spin-off that has long focused on self-driving cars.

“I think there's a big wave coming in the logistics industry that's not necessarily well appreciated," says Tasha Keeney, an analyst at ARK Invest who specializes in autonomous technology. She explains that electrified autonomous trucks have the potential to reduce shipping expenses not only when compared with those of traditional trucking but also with those of rail, while offering the door-to-door service that rail cannot. “The relationships that TuSimple has made within the trucking industry are interesting—in the long term, vertically integrated, purpose-built vehicles will have a lot of advantages."

By 2024,TuSimple plans to achieve Level 4 autonomy, meaning that its trucks will be able to operate without a human driver under limited conditions that may include time of day, weather, or premapped routes. At that point, TuSimple would start selling the trucks to fleet operators. Along the way, however, there are several other milestones the company must hit, beginning with its first “driver out" test in 2021, which Price describes as a critical real-world demonstration.

“This is no longer a science project," he says. “It's not research. It's engineering. The driver-out demonstration is to prove to us, and to prove to the public, that it can be done."

This article appears in the January 2021 print issue as “Robot Trucks Overtake Robot Cars."

The Conversation (0)

What Can the Metaverse Learn From Second Life?

Creator Philip Rosedale says a virtual reality internet is still some way off

7 min read
In the foreground are two female avatars,  each on the back of a male avatar. In the background are a house, garden, trees and blue sky.

Hanging out in Second Life

Linden Lab

The tech world is abuzz with talk of the metaverse, a virtual world where millions of people could soon gather to work, play, and socialize. The idea isn’t as new as it might seem though. Since 2003, people have been gathering to do all of the above in the online world of Second Life.

Its creators, Linden Lab, go to great pains to emphasize that Second Life is not a game, unlike other proto-metaverse experiences such as Fortnite or Roblox. In Second Life, there are no goals or objectives. Instead, users create a digital avatar to represent them and are then free to explore the world, meet other users, create their own digital content and even trade goods and services in the in-world currency, the Linden Dollar.

Keep Reading ↓ Show less

The Hyperloop Is Hyper Old

Elon Musk merely renamed a 200-year-old dream

3 min read
Illustration of a tube and various ways of moving vehicles.

William Heath's 1829 engraving pokes fun at a vacuum tube that conveys travelers from London to Bengal.

Universal Images Group/Getty Images

"Lord how this world improves as we grow older," reads the caption for a panel in the " March of Intellect," part of a series of colored etchings published between 1825 and 1829. The artist, William Heath (1794–1840), shows many futuristic contraptions, including a four-wheeled steam-powered horse called Velocity, a suspension bridge from Cape Town to Bengal, a gun-carrying platform lifted by four balloons, and a giant winged flying fish conveying convicts from England to New South Wales, in Australia. But the main object is a massive, seamless metallic tube taking travelers from East London's Greenwich Hill to Bengal, courtesy of the Grand Vacuum Tube Company.

Keep Reading ↓ Show less

EP29LPSP: Applications in Plasma Physics, Astronomy, and Highway Engineering

Ideal for demanding cryogenic environments, two-part EP29LPSP can withstand temperatures as low as 4K

3 min read

Since its introduction in 1978, Master Bond EP29LPSP has been the epoxy compound of choice in a variety of challenging applications. Ideal for demanding cryogenic environments, two-part EP29LPSP can withstand temperatures as low as 4K and can resist cryogenic shock when, for instance, it is cooled from room temperature to cryogenic temperatures within a 5-10 minute window. Optically clear EP29LPSP has superior physical strength, electrical insulation, and chemical resistance properties. It also meets NASA low outgassing requirements and exhibits a low exotherm during cure. This low viscosity compound is easy to apply and bonds well to metals, glass, ceramics, and many different plastics. Curable at room temperature, EP29LPSP attains its best results when cured at 130-165°F for 6-8 hours.

In over a dozen published research articles, patents, and manufacturers' specifications, scientists and engineers have identified EP29LPSP for use in their applications due to its unparalleled performance in one or more areas. Table 1 highlights several commercial and research applications that use Master Bond EP29LPSP. Table 2 summarizes several patents that reference EP29LPSP. Following each table are brief descriptions of the role Master Bond EP29LPSP plays in each application or invention.

Keep Reading ↓ Show less