This Car Runs on Code

It takes dozens of microprocessors running 100 million lines of code to get a premium car out of the driveway, and this software is only going to get more complex

7 min read
This Car Runs on Code
Image: Daimler

The avionics system in the F-22 Raptor, the current U.S. Air Force frontline jet fighter, consists of about 1.7 million lines of software code. The F-35 Joint Strike Fighter, scheduled to become operational in 2010, will require about 5.7 million lines of code to operate its onboard systems. And Boeing’s new 787 Dreamliner, scheduled to be delivered to customers in 2010, requires about 6.5 million lines of software code to operate its avionics and onboard support systems.

These are impressive amounts of software, yet if you bought a premium-class automobile recently, ”it probably contains close to 100 million lines of software code,” says Manfred Broy, a professor of informatics at Technical University, Munich, and a leading expert on software in cars. All that software executes on 70 to 100 microprocessor-based electronic control units (ECUs) networked throughout the body of your car.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Acer Goes Big on Glasses-Free, 3D Monitors—Look Out, VR

Is this what’s needed to bring augmented reality to the home office?

4 min read
A standing tablet computer shows a blow out of a car that appears to be coming out of the display.

Content creators are a key target for Acer's glasses-free 3D.

Acer

Acer, the world’s fifth largest PC brand, wants to take the growing AR/VR market by the horns with its SpatialLabs glasses-free stereoscopic 3D displays.

First teased in 2021 in a variant of Acer’s ConceptD 7 laptop, the technology expands this summer in a pair of portable monitors, the SpatialLabs View and View Pro, and select Acer Predator gaming laptops. The launch is paired with AI-powered software for converting existing 2D content into stereoscopic 3D.

Keep Reading ↓ Show less

DARPA Wants a Better, Badder Caspian Sea Monster

Liberty Lifter X-plane will leverage ground effect

4 min read
A rendering of a grey seaplane with twin fuselages and backwards-facing propellers
DARPA

Arguably, the primary job of any military organization is moving enormous amounts of stuff from one place to another as quickly and efficiently as possible. Some of that stuff is weaponry, but the vast majority are things that support that weaponry—fuel, spare parts, personnel, and so on. At the moment, the U.S. military has two options when it comes to transporting large amounts of payload. Option one is boats (a sealift), which are efficient, but also slow and require ports. Option two is planes (an airlift), which are faster by a couple of orders of magnitude, but also expensive and require runways.

To solve this, the Defense Advanced Research Projects Agency (DARPA) wants to combine traditional sealift and airlift with the Liberty Lifter program, which aims to “design, build, and flight test an affordable, innovative, and disruptive seaplane” that “enables efficient theater-range transport of large payloads at speeds far exceeding existing sea lift platforms.”

Keep Reading ↓ Show less
{"imageShortcodeIds":["29824201"]}

Bridge the Gaps in Your ADAS Test Strategy

Full-scene emulation in the lab is key to developing robust radar sensors and algorithms needed to realize ADAS capabilities

1 min read
Keysight
Keysight

Achieving the next level in vehicle autonomy demands robust algorithms trained to interpret radar reflections from automotive radar sensors. Overcome the gaps between software simulation and roadway testing to train the ADAS / AV algorithms with real-world conditions. Sharpen your ADAS' radar vision with full-scene emulation that allows you to lab test complex real-world scenario, while emulating up to 512 objects at distances as close as 1.5 meters.

Get this free whitepaper now!