Thin, Fast, and Flexible Semiconductors

Amorphous oxide semiconductors promise to make flat-panel displays faster and sharper than today’s silicon standby

10 min read
Thin, Fast, and Flexible Semiconductors
Illustration: Bryan Christie Design; monitor: iStockPhoto

imgIllustration: Bryan Christie Design

Amorphous silicon has long been the king of flat-panel displays. It began its reign in PC monitors and high-definition TV, then conquered netbooks, e-readers, and smartphones. No other substance was as suitable for the thin-film transistors that sit behind a display’s hundreds of thousands of pixels, turning each one on or off.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Superlattices Could Make Bulky Capacitors Obsolete

Researchers hope artificial antiferroelectric capacitors could help miniaturize electronics further

3 min read
A grid of arrows pointing in different directions

In artificial antiferroelectric structures, electric dipoles are normally arranged in ways that lead to zero electric polarization.

Luxembourg Institute of Science and Technology/Science Advances

One roadblock to shrinking present-day electronics is the relatively large size of their capacitors. Now scientists have developed new “superlattices” that might help build capacitors as small as one-hundredth the size of conventional ones.

Whereas batteries store energy in chemical form, capacitors store energy in an electric field. Batteries typically possess greater energy densities than capacitors—they can store more energy for their weight. However, capacitors usually have greater power densities than batteries—they charge and discharge more quickly. This makes capacitors useful for applications involving pulses of power.

Keep Reading ↓Show less

No More Invasive Surgery—This Pacemaker Dissolves Instead

Temporary pacemakers are often vital but dangerous to remove when their jobs are done

3 min read
Animated gif of a device with a coil on one end dissolving between days 1 and 60.

The transient pacemaker, developed at Northwestern University, in Evanston, Ill., harmlessly dissolves in the patient's body over time.

Northwestern University

After having cardiovascular surgery, many patients require a temporary pacemaker to help stabilize their heart rate. The device consists of a pulse generator, one or more insulated wires, and an electrode at the end of each wire.

The pulse generator—a metal case that contains electronic circuitry with a small computer and a battery—regulates the impulses sent to the heart. The wire is connected to the pulse generator on one end while the electrode is placed inside one of the heart’s chambers.

But there are several issues with temporary pacemakers: The generator limits the patient’s mobility, and the wires must be surgically removed, which can cause complications such as infection, dislodgment, torn or damaged tissues, bleeding, and blood clots.

Keep Reading ↓Show less

Accelerate Time to Market with Calibre nmLVS Recon Technology: A New Paradigm for Circuit Verification

Improve LVS circuit verification productivity in early-stage SoC integration and reduce time to market

1 min read
Accelerate Time to Market with Calibre nmLVS Recon Technology: A New Paradigm for Circuit Verification

One thing is clear…tapeouts are getting harder, and taking longer. As part of a growing suite of innovative early-stage design verification technologies, the Calibre nmLVS Recon tool enables design teams to rapidly examine dirty and immature designs to find and fix high-impact circuit errors earlier and faster, leading to an overall reduction in tapeout schedules and time to market.

Learn more in this technical paper.