The December 2022 issue of IEEE Spectrum is here!

Close bar

The Fight Over the .africa Domain Name

Two registries have claimed the Internet domain, leaving it stuck in limbo. The court battle begins next week

3 min read
The Fight Over the .africa Domain Name
Illustration: Randi Klett

An explosion of domain names has reshaped the Internet by offering hundreds of new ways to end a Web address. Lawyers can now advertise websites with “.lawyer” while toy companies can register with “.toys.” Jokers who want to build a site that finishes with “.fail” or “.wtf” can do that, too.  

But one highly sought domain remains stubbornly out of reach for roughly a billion people. Africans still can’t register sites to “.africa” because the right to operate that domain is the subject of a tussle between rival registries that is now dragging through its fourth year. While the domain’s ultimate fate could remain the subject of legal battles for years, a California court will decide on 4 April whether to finally permit .africa to go live.

The domain could prove quite lucrative for whichever registry wins it, though both competing registries pledge to spend profits on charitable activities. Registries act as domain name wholesalers. They sell the right to resell a domain name to many registrars such as GoDaddy, which make their money by signing people up.

Wayne Diamond, who runs a registrar based in South Africa, says many of his clients want to list websites with .africa, but are stuck waiting. “I think there's growing impatience with what's happening now that it's being held up in legal wranglings,” he says. “The delay has had a significant impact on the growth of the domain space in Africa.”

The two registries vying for control of .africa have also pitched the domain as an emerging economic engine and cultural exchange. DotConnectAfrica, a charitable trust that operates out of Kenya, promotes .africa as “your online African identity” while the South African nonprofit ZA Central Registry says the new domain will enable “e-commerce, technology and infrastructure to flourish.”

Those promises have so far gone unfulfilled. The tug-of-war began in 2011 when the Internet Corporation for Assigned Names and Numbers (ICANN), the nonprofit that manages domain names, noticed many of the shortest and most memorable addresses that ended in “.com,” “.org” and “.net” were taken.

The organization invited registries to apply to add more options, and has released 938 new domains in the time since. Most disputes were resolved amicably or by offering domains up for auction. For example, in January GMO Registry Inc. beat seven competitors with its $41.5 million bid for the “.shop” domain.

The .africa domain, however, didn’t go up for sale because of its geographic and cultural importance. In fact, ICANN requires applicants for a geographic domain to demonstrate support from 60 percent of national governments.

That requirement lies at the heart of the disagreement over which of the rival registries is better suited to manage .africa. Both candidates submitted their applications in 2012 and claimed that they had the support of the African Union Commission. DotConnectAfrica says it received the commission’s blessing in 2009, but the commission later formally withdrew that support and backed ZA Central Registry.

Sophia Bekele, head of DotConnectAfrica, says the process wasn’t “transparent and accountable” and that the commission failed to represent African governments. Neil Dundas, executive director of ZA Central Registry, points out that DotConnectAfrica has relatively few staff on the continent and would work with UK-based registry CentralNic to manage the domain. Filings with ICANN indicate DotConnectAfrica will charge only US $10 per year for website registrations, versus the $18 that ZA Central Registry plans to collect should it win the domain rights.

In 2014, ICANN agreed to issue .africa to ZA Central Registry. To fight back, DotConnectAfrica requested an internal review. After two more years, ICANN’s board passed a resolution in March reaffirming their decision and stating that DotConnectAfrica had not garnered enough government support.

That decision would have cleared the way for ZA Central Registry to begin registering Africa’s websites, but DotConnectAfrica filed a legal complaint against California-based ICANN, and asked a U.S. district court to block the organization from awarding .africa to ZA Central Registry while the case proceeds.

In a hearing scheduled for Monday, 4 April, the court will decide whether to grant DotConnectAfrica’s petition for a temporary stay that would prevent the transfer of the long-awaited .africa to ZA Central Registry while the suit against ICANN is adjudicated. If the court rules in its favor, ZA Central Registry estimates that it could have .africa sites up and running within four months. Dundas says he would love to see over a million sites signed up within three to five years.

But if not, the delay will drag on, and the promise of a new domain to jumpstart economic growth and build a shared online identity among Africans will remain nothing more than untapped potential.

The Conversation (0)

Metamaterials Could Solve One of 6G’s Big Problems

There’s plenty of bandwidth available if we use reconfigurable intelligent surfaces

12 min read
An illustration depicting cellphone users at street level in a city, with wireless signals reaching them via reflecting surfaces.

Ground level in a typical urban canyon, shielded by tall buildings, will be inaccessible to some 6G frequencies. Deft placement of reconfigurable intelligent surfaces [yellow] will enable the signals to pervade these areas.

Chris Philpot

For all the tumultuous revolution in wireless technology over the past several decades, there have been a couple of constants. One is the overcrowding of radio bands, and the other is the move to escape that congestion by exploiting higher and higher frequencies. And today, as engineers roll out 5G and plan for 6G wireless, they find themselves at a crossroads: After years of designing superefficient transmitters and receivers, and of compensating for the signal losses at the end points of a radio channel, they’re beginning to realize that they are approaching the practical limits of transmitter and receiver efficiency. From now on, to get high performance as we go to higher frequencies, we will need to engineer the wireless channel itself. But how can we possibly engineer and control a wireless environment, which is determined by a host of factors, many of them random and therefore unpredictable?

Perhaps the most promising solution, right now, is to use reconfigurable intelligent surfaces. These are planar structures typically ranging in size from about 100 square centimeters to about 5 square meters or more, depending on the frequency and other factors. These surfaces use advanced substances called metamaterials to reflect and refract electromagnetic waves. Thin two-dimensional metamaterials, known as metasurfaces, can be designed to sense the local electromagnetic environment and tune the wave’s key properties, such as its amplitude, phase, and polarization, as the wave is reflected or refracted by the surface. So as the waves fall on such a surface, it can alter the incident waves’ direction so as to strengthen the channel. In fact, these metasurfaces can be programmed to make these changes dynamically, reconfiguring the signal in real time in response to changes in the wireless channel. Think of reconfigurable intelligent surfaces as the next evolution of the repeater concept.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}