The December 2022 issue of IEEE Spectrum is here!

Close bar
The Trials of Turning a Digital Light Projector Into an Ultraviolet 3-D Printer
Photo: Paul Wallich

The basic idea is so seductive. Forget about forming an object from spools of plastic melted and laid down by a tiny nozzle as most consumer 3D printers do. Instead, use an optically reactive resin and modern display technology to zap an entire layer of solidified material into place in one shot. Then the next layer, and the next, until the object is complete.

After all, some professional stereolithography printers, such as the Form 1 and 2 and the Nobel 1.0, do exactly that. But could I, one person working at home in his spare time with mostly surplus parts, build such a machine? The answer is—spoiler alert!—almost. Like a tiny home-brew analogue of fusion power, my printer seems to stay just another month or two of concentrated work away from operation, no matter how many months go by.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

From WinZips to Cat GIFs, Jacob Ziv’s Algorithms Have Powered Decades of Compression

The lossless-compression pioneer received the 2021 IEEE Medal of Honor

11 min read
Photo of Jacob Ziv
Photo: Rami Shlush

Lossless data compression seems a bit like a magic trick. Its cousin, lossy compression, is easier to comprehend. Lossy algorithms are used to get music into the popular MP3 format and turn a digital image into a standard JPEG file. They do this by selectively removing bits, taking what scientists know about the way we see and hear to determine which bits we'd least miss. But no one can make the case that the resulting file is a perfect replica of the original.

Not so with lossless data compression. Bits do disappear, making the data file dramatically smaller and thus easier to store and transmit. The important difference is that the bits reappear on command. It's as if the bits are rabbits in a magician's act, disappearing and then reappearing from inside a hat at the wave of a wand.

Keep Reading ↓Show less