The February 2023 issue of IEEE Spectrum is here!

Close bar

The Superconducting Shields Behind MRIs’ Triumph

Actively shielded magnets brought the machines from iron-walled rooms to the mainstream

4 min read
Looking through the opening of an MRI machine

The bore of an MRI scanner contains a strong magnet and various coils. The machine uses the resulting magnetic field and radio waves to create images of the patient’s insides.

iStockphoto

Magnetic resonance imaging (MRI) is a common strategy physicians use to diagnose diseases such as cancer. The patient is placed on a table that slides into the bore of a scanner, which contains a strong magnet and various coils. The machine uses the resulting magnetic field and radio waves to create images of the patient’s insides.

Full-body MRI scanners were first used clinically in hospitals in the early 1980s, but they were bulky and expensive. Because the magnetic field produced by the machines sometimes strayed outside the room where the MRI scanner was located, safety measures had to be implemented. The stray field was dangerous as it could affect pacemakers and other metal medical devices.


To confine the magnetic field to the room, iron sheets were placed on the walls, ceiling, and floors. The strategy, known as passive shielding, increased construction costs and the time it took to install a scanner, however. The method also restricted where the machines could be built and used.

The addition of secondary actively shielded superconducting magnets in MRI systems in 1986 eliminated the need for iron sheets. The enhancement, unveiled by a team of scientists at Oxford Instruments (now part of Siemens), in Oxfordshire, England, lowered installation costs and shortened construction times.

The IEEE commemorated the magnets as an IEEE Milestone during a ceremony on 17 June at the Siemens Oxfordshire facility.

“The magnets made MRI widely available,” says Izzet Kale. The IEEE member is chair of the IEEE U.K. and Ireland Section, which sponsored the Milestone nomination.

Magnetic fields and radio waves

Images produced by MRI scanners aren’t really images in the usual sense. They are constructed by a computer using magnetic fields and radio waves.

Nearly 70 percent of the human body consists of water, and each water molecule has two hydrogen protons. The protons’ magnetic moments (the measure of its tendency to align with a magnetic field) are usually oriented in various directions, but when they are subjected to a strong magnetic field, the protons become polarized and point in the same direction, according to an article about MRI on Canon Medical. The application of radio waves at the right frequency makes the protons’ orientation oscillate. When the radio waves are turned off, the protons revert to their prior state and emit a signal (also a radio wave). The interaction is magnetic resonance.

The strength of the magnetic field produced by an MRI machine can be altered using three sets of gradient electric coils that are made of copper or aluminum, as explained in an article published by the U.S. National Library of Medicine. Gradient electric coils are loops of wire or thin conductive sheets that are located on the innermost part of the scanner’s tube. When current passes through the coils, a secondary magnetic field, or gradient field, is created. The gradient field slightly distorts the main magnetic field and modifies its strength.

Protons in different areas of the patient’s body will resonate at different frequencies depending on how strong the magnetic field is. Receiver coils in the scanner tube improve the detection of the emitted signal.

MRI scanners use those signals to produce images, showing differences in the way protons react.

Making MRI a staple of medical diagnostics

When MRI scanners were introduced in hospitals, up to 40 tonnes of iron were required to prevent the external magnetic field from straying beyond the room, according to the actively shielded superconducting magnets’ patent. But the extra safety measures made installing a scanner more expensive and difficult because the machine often had to be built in a freestanding building or in the hospital’s basement.

To help lower the cost and make it easier to install scanners, four Oxford Instruments scientists—John Bird, Frank Davis, IEEE Member David Hawksworth, and John Woodgate—in 1986 enhanced the scanner with a second set of actively shielded superconducting magnets. Bird was the project’s lead engineer, Davis was the company’s technical director, Hawksworth was its engineering director, and Woodgate was the managing director.

“Actively shielded superconducting magnets made MRI widely available.”

They created secondary electromagnets that, like the primary ones, operate in a superconducting state: they have no resistance to the flow of an electrical current and can carry large currents without overheating. The electromagnets were forced into a superconducting state by being continually bathed in liquid helium at minus 269.1 °C, according to an entry about the Milestone on the Engineering and Technology History Wiki.

The magnets are made of two coils of wire, either of niobium and titanium or niobium and tin. The coils are embedded in copper.

An electrical current is passed through the coils, each producing its own magnetic field. The coils are oriented so that the magnetic fields they produce oppose each other, according to the technology’s patent.

If, for example, the first coil produces a magnetic field of 2 Teslas and the second coil generates a field that’s 0.5 T, it reduces the strength of the overall magnetic field to 1.5 T. The Tesla is the unit of measurement of a magnetic field’s magnitude.

Although the strength of the scanner’s magnetic field is reduced by the active shielding, it keeps the stray magnetic field inside the room, the developers noted in their patent application.

Thanks to actively shielded superconducting magnets, MRI is now a fundamental diagnostic tool “on which modern medicine depends,” Kale says. “Active shielding was a key enabler to MRI becoming so widespread and important.”

Administered by the IEEE History Center and supported by donors, the Milestone program recognizes outstanding technical developments around the world. The magnets’ Milestone plaque, which is to be displayed inside the Siemens Magnet Technology building in the Eynsham section of Oxfordshire reads:

“At this site, the first actively shielded superconducting magnets for diagnostic magnetic resonance imaging (MRI) use were conceived, designed, and produced. Active shielding reduced the size, weight, and installed cost of MRI systems, allowing them to be more easily transported and advantageously located, thereby benefiting advanced medical diagnosis worldwide.”

The Conversation (3)
Anjan Saha14 Nov, 2022
M

According to Meissner experiment the superconductor must posses both the properties Resistivity P=0 & Flux Density B=0. However B=Mu0(H+M). Where MU0 = Magnetic Permeabilty require M=-H But Practicality M = (MUr-1)H where

MUr=0, Relative Magnetic Permeability of Superconductor is Zero. Hence Super Conductor are perfectly Diamagneic. Phase Velocity of E.M.Wave =p=v/c=1/(MurEr)^1/2, V/C <1, Superconductor are made of composite alloys and polarizability of the Specimen is given by P/E=E0(ER -1)-->infinity as Er-->Infinity.

It is very usefull to use superconducting shield for secondary Magnetic coil in MRI

Scanner for Safety & better Scanning

Anjan Saha14 Nov, 2022
M

Don Yochum13 Sep, 2022
M

I graduated in Radiologic Technology in college and later sold MRIs and was aware of the site issues and costs associated with the earlier units. The British were pioneers in axial scanning, back projection algorithms which also produced the first CAT Scanner (EMI; Hounsfield/Cormack) and a rectilinear axial scanner for Nuclear Medicine.

Get unlimited IEEE Spectrum access

Become an IEEE member and get exclusive access to more stories and resources, including our vast article archive and full PDF downloads
Get access to unlimited IEEE Spectrum content
Network with other technology professionals
Establish a professional profile
Create a group to share and collaborate on projects
Discover IEEE events and activities
Join and participate in discussions
Illustration showing an astronaut performing mechanical repairs to a satellite uses two extra mechanical arms that project from a backpack.

Extra limbs, controlled by wearable electrode patches that read and interpret neural signals from the user, could have innumerable uses, such as assisting on spacewalk missions to repair satellites.

Chris Philpot

What could you do with an extra limb? Consider a surgeon performing a delicate operation, one that needs her expertise and steady hands—all three of them. As her two biological hands manipulate surgical instruments, a third robotic limb that’s attached to her torso plays a supporting role. Or picture a construction worker who is thankful for his extra robotic hand as it braces the heavy beam he’s fastening into place with his other two hands. Imagine wearing an exoskeleton that would let you handle multiple objects simultaneously, like Spiderman’s Dr. Octopus. Or contemplate the out-there music a composer could write for a pianist who has 12 fingers to spread across the keyboard.

Such scenarios may seem like science fiction, but recent progress in robotics and neuroscience makes extra robotic limbs conceivable with today’s technology. Our research groups at Imperial College London and the University of Freiburg, in Germany, together with partners in the European project NIMA, are now working to figure out whether such augmentation can be realized in practice to extend human abilities. The main questions we’re tackling involve both neuroscience and neurotechnology: Is the human brain capable of controlling additional body parts as effectively as it controls biological parts? And if so, what neural signals can be used for this control?

Keep Reading ↓Show less
{"imageShortcodeIds":[]}