The Rise of the Body Bots

Exoskeletons are strutting out of the lab—and they are carrying their creators with them

12 min read
Photo of person wearing HAL-5, a powered robotic suit designed to help elderly and disabled people walk and carry things.
Photo: Yoshiyui Sankai, University of Tsukuba/Cyberdyne Inc.

img Bionic Body: A powered robotic suit designed to help elderly and disabled people walk and carry things, HAL-5 will be available in Japan in November. Photo: Yoshiyui Sankai, University of Tsukuba/Cyberdyne Inc.

Science-fiction fans have long become accustomed to the idea of steely commandos clad in robotic exoskeletons taking on huge, vicious, extraterrestrial beasts, shadowy evil cyborgs, or even each other. Supersoldiers encased in sleek, self-powered armor figure memorably in such works as Robert A. Heinlein’s 1959 novel Starship Troopers, Joe W. Haldeman’s 1975 The Forever War, and many other books and movies. In 1999’s A Good Old-Fashioned Future, for example, Bruce Sterling writes of a soldier dying after crashing in his “power-armor, a leaping, brick-busting, lightning-spewing exoskeleton.”

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

DARPA Wants a Better, Badder Caspian Sea Monster

Liberty Lifter X-plane will leverage ground effect

4 min read
A rendering of a grey seaplane with twin fuselages and backwards-facing propellers
DARPA

Arguably, the primary job of any military organization is moving enormous amounts of stuff from one place to another as quickly and efficiently as possible. Some of that stuff is weaponry, but the vast majority are things that support that weaponry—fuel, spare parts, personnel, and so on. At the moment, the U.S. military has two options when it comes to transporting large amounts of payload. Option one is boats (a sealift), which are efficient, but also slow and require ports. Option two is planes (an airlift), which are faster by a couple of orders of magnitude, but also expensive and require runways.

To solve this, the Defense Advanced Research Projects Agency (DARPA) wants to combine traditional sealift and airlift with the Liberty Lifter program, which aims to “design, build, and flight test an affordable, innovative, and disruptive seaplane” that “enables efficient theater-range transport of large payloads at speeds far exceeding existing sea lift platforms.”

Keep Reading ↓ Show less
{"imageShortcodeIds":["29824201"]}

IEEE Spectrum Wins Six Neal Awards

The publication was recognized for its editorial excellence, website, and art direction

1 min read
A group of smiling people holding two award placards in front of a backdrop for the Jess H. Neal Awards

The IEEE editorial and art team show off two of their five awards.

Bruce Byers/SIIA

IEEE Spectrum garnered top honors at this year’s annual Jesse H. Neal Awards ceremony, held on 26 April. Known as the “Pulitzer Prizes” of business-to-business journalism, the Neal Awards recognize editorial excellence. The awards are given by the SIIA (Software and Information Industry Association).

For the fifth year in a row, IEEE Spectrum was awarded the Best Media Brand. The award is given for overall editorial excellence.

Keep Reading ↓ Show less

Modeling Microfluidic Organ-on-a-Chip Devices

Register for this webinar to enhance your modeling and design processes for microfluidic organ-on-a-chip devices using COMSOL Multiphysics

1 min read
Comsol Logo
Comsol

If you want to enhance your modeling and design processes for microfluidic organ-on-a-chip devices, tune into this webinar.

You will learn methods for simulating the performance and behavior of microfluidic organ-on-a-chip devices and microphysiological systems in COMSOL Multiphysics. Additionally, you will see how to couple multiple physical effects in your model, including chemical transport, particle tracing, and fluid–structure interaction. You will also learn how to distill simulation output to find key design parameters and obtain a high-level description of system performance and behavior.

Keep Reading ↓ Show less