The Quest for 2-D Silicon

Silicene—the silicon analogue to graphene—could have amazing electronic abilities

3 min read
Two-dimensional silicon forms hexagons on silver.
Silicon Honeycomb: Two-dimensional silicon forms hexagons on silver.
Image: Thomas Bruhn

In 2004 two researchers, Andre Geim and Konstantin Novoselev, at the University of Manchester, in England, announced the creation of graphene, a two-dimensional form of carbon with unparalleled electronic properties. A decade earlier, Kyozaburo Takeda and Kenji Shiraishi of NTT Basic Research Laboratories, in Atsugi, Japan, predicted that a similar structure of silicon atoms—silicene—should exist. Now, a group of scientists in Europe say they’ve finally managed to create a sample of the stuff. Experts expect that silicene will have some of graphene’s amazing abilities—such as allowing electrons to speed through it as if they had no mass—but in an element more familiar to the semiconductor industry.

Geim and Novoselev had isolated graphene in an embarrassingly simple manner: They peeled it off graphite with Scotch tape. The creation of a silicene layer was much more difficult. “There is no equivalent to graphite where you could simply peel it off, and that was the problem,” says Patrick Vogt, a physicist at the Technical University of Berlin. He led a team of researchers from France and Italy, who synthesized and investigated the properties of single layers of silicene and reported the results in April’s Physical Review Letters.

Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

A Circuit to Boost Battery Life

Digital low-dropout voltage regulators will save time, money, and power

11 min read
Image of a battery held sideways by pliers on each side.
Edmon de Haro

YOU'VE PROBABLY PLAYED hundreds, maybe thousands, of videos on your smartphone. But have you ever thought about what happens when you press “play”?

The instant you touch that little triangle, many things happen at once. In microseconds, idle compute cores on your phone's processor spring to life. As they do so, their voltages and clock frequencies shoot up to ensure that the video decompresses and displays without delay. Meanwhile, other cores, running tasks in the background, throttle down. Charge surges into the active cores' millions of transistors and slows to a trickle in the newly idled ones.

Keep Reading ↓ Show less