Close

The Psychiatrist in the Machine

Software rivals doctors at distinguishing among different kinds of depression and schizophrenia

4 min read
image of brain
Hard Evidence: Psychiatrists want to diagnose patients based on their physiology rather than subjective symptoms. Images of the brain and the electric signals that emanate from it could be key to picking the right treatments for depression and schizophrenia
Illustration: Don Farrall/Getty Images

Psychiatrists make life-altering decisions on the basis of a subjective assessment of a set of symptoms. But many freely admit they have far too little information to answer some critical questions: Is the patient suffering from severe depression, or is this a case of bipolar disorder that hasn’t fully manifested itself yet? Will this schizophrenic patient respond to this drug? Draw the wrong conclusions about a depressed patient and the treatment may send him careening into mania. Make the wrong assessment of a schizophrenic person and you may give him an ineffective drug whose side effects could kill him.

“I make these decisions every day,” says Dr. Gary Hasey, associate professor of psychiatry at McMaster University, in Hamilton, Ont., Canada. “If you make an error, you stand a good chance of making things worse.”

Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

This CAD Program Can Design New Organisms

Genetic engineers have a powerful new tool to write and edit DNA code

11 min read
A photo showing machinery in a lab

Foundries such as the Edinburgh Genome Foundry assemble fragments of synthetic DNA and send them to labs for testing in cells.

Edinburgh Genome Foundry, University of Edinburgh

In the next decade, medical science may finally advance cures for some of the most complex diseases that plague humanity. Many diseases are caused by mutations in the human genome, which can either be inherited from our parents (such as in cystic fibrosis), or acquired during life, such as most types of cancer. For some of these conditions, medical researchers have identified the exact mutations that lead to disease; but in many more, they're still seeking answers. And without understanding the cause of a problem, it's pretty tough to find a cure.

We believe that a key enabling technology in this quest is a computer-aided design (CAD) program for genome editing, which our organization is launching this week at the Genome Project-write (GP-write) conference.

With this CAD program, medical researchers will be able to quickly design hundreds of different genomes with any combination of mutations and send the genetic code to a company that manufactures strings of DNA. Those fragments of synthesized DNA can then be sent to a foundry for assembly, and finally to a lab where the designed genomes can be tested in cells. Based on how the cells grow, researchers can use the CAD program to iterate with a new batch of redesigned genomes, sharing data for collaborative efforts. Enabling fast redesign of thousands of variants can only be achieved through automation; at that scale, researchers just might identify the combinations of mutations that are causing genetic diseases. This is the first critical R&D step toward finding cures.

Keep Reading ↓ Show less