The Netherlands Confronts a Carbon Dilemma: Sequester or Recycle?

Public opposition to sequestration will make it harder to reach the country’s carbon reduction goal

4 min read
Photo: John Gundlach/Hollandse Hoogte/Redux
Waste Not: Converting emissions from this steel mill into kerosene could fuel half the airplanes at a nearby airport.
Photo: John Gundlach/Hollandse Hoogte/Redux

As soon as the new Dutch government took office in October, it announced an aggressive target—to reduce carbon emissions by 49 percent by 2030. This will ultimately require the Netherlands to sequester 20 million metric tons of carbon dioxide per year—equivalent to the annual emissions produced by 4.5 coal-fired power plants.

Sequestering that much CO2 underground will be difficult, whether it’s captured directly from the flues of power stations and steel mills or extracted from the air. Currently, the Netherlands sequesters less than 10,000 metric tons of CO2 annually.

Gert Jan Kramer, a physicist at Utrecht University, says the government’s aims are “drastic” but possible. “The technology and the industrial capacity for storing underground tens of megatons [1 megaton = 1 million metric tons] of carbon dioxide is ready,” he says.

Underground natural gas reservoirs are already leakproof, and pumping CO2 into them while extracting gas would maintain their internal pressure, which would stabilize underground rock structure and prevent seismic activity. “We have investigated every event and consequence imaginable, and we’ve concluded that underground carbon storage is safe,” says Robert Hack, an engineering geologist at the University of Twente, in the Netherlands.

However, carbon sequestration projects have not fared well in Europe because of public opposition. More than 20 large-scale carbon capture and sequestration projects are now operational worldwide, but only two are based in Europe.

One of Europe’s largest proposed projects, the Rotterdam Capture and Storage Demonstration Project, which was designed to capture, transport, and sequester about one million metric tons of CO2 per year, 20 kilometers offshore, fell through in June when two private investment companies backed out. Storing carbon offshore is usually easier, Hack says, because it’s generally more accepted by the public—but it’s also more expensive.

The Carbon Question

img Illustration: Emily Cooper

Once carbon is captured, the choice becomes whether to recycle or store it. CO2 is produced from
the burning of fossil fuels to generate electricity [1]. Next, CO2 is scrubbed from the resulting flue
gas [2]. If storage is chosen, the CO2 is then deposited underground in rock layers [3]. To recycle
the carbon instead, electrolysis is applied to water, producing hydrogen [4]. The CO2 undergoes
a reaction with the hydrogen to create methanol [5]. The methanol is used to make hydrocarbon
fuels, including kerosene and gasoline [6].

If the Netherlands’ new policy is to succeed, such facilities will need to be part of the nation’s future. “The Dutch government will have to give a strong signal that they want to scale up the carbon sequestration as a mainstream application—not just a 1-megaton operation but a 10-megaton operation,” says Kramer.

There is another way to deal with carbon dioxide in the atmosphere, and some researchers prefer it to sequestration: If you can’t get rid of CO2, just transform it into something useful, such as synthetic fuel or a new material. “I think there is a strong case for recycling CO2,” says Frans Saris, a physicist and former chairman of the board of management of the Energy Research Center of the Netherlands.

It’s possible to produce several types of synthetic fuel from CO2. One way to do this is to apply electrolysis to a mixture of water and CO2. The mixture splits into carbon monoxide (CO) and oxygen. Next, a reaction between CO and hydrogen produces methanol (CH3OH).

Another way is to mix CO2 directly with hydrogen (which is also produced through the electrolysis of water) at high temperatures to form methanol [see graphic]. This methanol can then be used as a fuel for combustion engines or fuel cells, or as the starting material for hydrocarbon fuels, including kerosene and gasoline.

As an example, Saris points to a Tata Steel facility near Amsterdam. “We have calculated that the amount of CO2 that is emitted by the steel mill, if converted to kerosene, would power at least half of the planes flying from Schiphol Airport,” he says.

However, other scientists disagree with the idea that recycling CO2 to produce synthetic fuels can meaningfully reduce the amount of carbon in the atmosphere. One problem is that the same process that scrubs CO2 from the flue gases of a fossil-fuel power plant also reduces the plant’s electrical power output by up to 25 percent, says Hack. This is because that process requires a substantial amount of energy to heat, cool, and pump solvents that absorb CO2 from the flue gases.

Gunnar Luderer, a researcher at the Potsdam Institute for Climate Impact Research, in Germany, argues that synthetic fuel produced from CO2 for transportation is not really carbon neutral when captured from the flues of power plants. “You cannot have a second carbon capture from the emissions of a car or an airplane. In the end, it is fossil carbon that undergoes combustion twice,” he says.

Luderer agrees, however, that capturing carbon from the air and using it for purposes other than transportation changes the equation. Cement factories are known for their massive release of carbon into the atmosphere. Instead of capturing that carbon after the fact, it would make more sense to extract carbon from the air and use it to produce carbon fibers. These fibers are less corrosive than steel beams and require less concrete to cover. Using them in place of steel could reduce demand for concrete, and thereby cut emissions from its production. “Here, you would have a double benefit,” says Luderer.

A version of this article appears in the January 2018 print magazine as "The Netherlands’ Carbon Dilemma: Sequester or Recycle?" 

The Conversation (0)

Smokey the AI

Smart image analysis algorithms, fed by cameras carried by drones and ground vehicles, can help power companies prevent forest fires

7 min read
Smokey the AI

The 2021 Dixie Fire in northern California is suspected of being caused by Pacific Gas & Electric's equipment. The fire is the second-largest in California history.

Robyn Beck/AFP/Getty Images

The 2020 fire season in the United States was the worst in at least 70 years, with some 4 million hectares burned on the west coast alone. These West Coast fires killed at least 37 people, destroyed hundreds of structures, caused nearly US $20 billion in damage, and filled the air with smoke that threatened the health of millions of people. And this was on top of a 2018 fire season that burned more than 700,000 hectares of land in California, and a 2019-to-2020 wildfire season in Australia that torched nearly 18 million hectares.

While some of these fires started from human carelessness—or arson—far too many were sparked and spread by the electrical power infrastructure and power lines. The California Department of Forestry and Fire Protection (Cal Fire) calculates that nearly 100,000 burned hectares of those 2018 California fires were the fault of the electric power infrastructure, including the devastating Camp Fire, which wiped out most of the town of Paradise. And in July of this year, Pacific Gas & Electric indicated that blown fuses on one of its utility poles may have sparked the Dixie Fire, which burned nearly 400,000 hectares.

Until these recent disasters, most people, even those living in vulnerable areas, didn't give much thought to the fire risk from the electrical infrastructure. Power companies trim trees and inspect lines on a regular—if not particularly frequent—basis.

However, the frequency of these inspections has changed little over the years, even though climate change is causing drier and hotter weather conditions that lead up to more intense wildfires. In addition, many key electrical components are beyond their shelf lives, including insulators, transformers, arrestors, and splices that are more than 40 years old. Many transmission towers, most built for a 40-year lifespan, are entering their final decade.

Keep Reading ↓ Show less