The Italian Computer: Olivetti’s ELEA 9003 Was a Study in Elegant, Ergonomic Design

In 1959, Olivetti introduced one of the first transistorized mainframes and started its own transistor company

11 min read
illustration of Adriano Olivetti and Mario Tchou.
Digital Future: In the 1950s, Adriano Olivetti (left), the head of Italy’s Olivetti Co., decided that computers were the company’s future, and he hired Mario Tchou (right), a brilliant electrical engineer, to oversee what became the ELEA 9003.
Illustration: Ciaj Rocchi and Matteo Demonte (courtesy of La Lettura/Il Corriere della Sera)

“I have made my decision: We are going to scrap the first version of our computer, and we will start again from scratch." It's the autumn of 1957, and Mario Tchou, a brilliant young Chinese-Italian electrical engineer, is speaking to his team at the Olivetti Electronics Research Laboratory. Housed in a repurposed villa on the outskirts of Pisa, not far from the Leaning Tower, the lab is filled with vacuum tubes, wires, cables, and other electronics, a startling contrast to the tasteful decorations of the palatial rooms.

On any weekday, some 20 or so physicists, technicians, and engineers would be hard at work there, designing, developing, soldering, conferring. In less than two years—half the time they'd been allotted—they've completed their first prototype mainframe, called Macchina Zero (Zero Machine). No other company in Italy has ever built a computer before. They're understandably proud.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

"SuperGPS" Accurate to 10 Centimeters or Better

New optical-wireless hybrid makes use of existing telecommunications infrastructure

3 min read
illustration of man looking at giant smart phone with map and red "you are here" symbol
iStock

Modern life now often depends on GPS(short for Global Positioning System), but it can err on the order of meters in cities. Now a new study from a team of Dutch researchers reveals a terrestrial positioning system based on existing telecommunications networks can deliver geolocation info accurate to within 10 centimeters in metropolitan areas.

The scientists detailed their findings 16 November in the journal Nature.

Keep Reading ↓Show less

The Future of the Transistor Is Our Future

Nothing but better devices can tackle humanity’s growing challenges

7 min read
Close-up of a colorful semiconductor wafer held the white gloved hands of a clean room technician.

A 300-millimeter wafer from a GlobalFoundries fab in Dresden is full of advanced transistors. The industry will need to continue to produce more and better devices, argues the author.

Liesa Johannssen-Koppitz/Bloomberg/Getty Images

This is a guest post in recognition of the 75th anniversary of the invention of the transistor. It is adapted from an essay in the July 2022 IEEE Electron Device Society Newsletter. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.

On the 75th anniversary of the invention of the transistor, a device to which I have devoted my entire career, I’d like to answer two questions: Does the world need better transistors? And if so, what will they be like?

Keep Reading ↓Show less
{"imageShortcodeIds":[]}