The December 2022 issue of IEEE Spectrum is here!

Close bar

The Italian Computer: Olivetti’s ELEA 9003 Was a Study in Elegant, Ergonomic Design

In 1959, Olivetti introduced one of the first transistorized mainframes and started its own transistor company

11 min read
illustration of Adriano Olivetti and Mario Tchou.
Digital Future: In the 1950s, Adriano Olivetti (left), the head of Italy’s Olivetti Co., decided that computers were the company’s future, and he hired Mario Tchou (right), a brilliant electrical engineer, to oversee what became the ELEA 9003.
Illustration: Ciaj Rocchi and Matteo Demonte (courtesy of La Lettura/Il Corriere della Sera)

“I have made my decision: We are going to scrap the first version of our computer, and we will start again from scratch." It's the autumn of 1957, and Mario Tchou, a brilliant young Chinese-Italian electrical engineer, is speaking to his team at the Olivetti Electronics Research Laboratory. Housed in a repurposed villa on the outskirts of Pisa, not far from the Leaning Tower, the lab is filled with vacuum tubes, wires, cables, and other electronics, a startling contrast to the tasteful decorations of the palatial rooms.

On any weekday, some 20 or so physicists, technicians, and engineers would be hard at work there, designing, developing, soldering, conferring. In less than two years—half the time they'd been allotted—they've completed their first prototype mainframe, called Macchina Zero (Zero Machine). No other company in Italy has ever built a computer before. They're understandably proud.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Video Friday: Humanoid Soccer

Your weekly selection of awesome robot videos

4 min read
Humans and human-size humanoid robots stand together on an indoor soccer field at the beginning of a game

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

CoRL 2022: 14–18 December 2022, AUCKLAND, NEW ZEALAND
ICRA 2023: 29 May–2 June 2023, LONDON

Enjoy today’s videos!

Keep Reading ↓Show less

Computing With Chemicals Makes Faster, Leaner AI

Battery-inspired artificial synapses are gaining ground

5 min read
Array of devices on a chip

This analog electrochemical memory (ECRAM) array provides a prototype for artificial synapses in AI training.

IBM research

How far away could an artificial brain be? Perhaps a very long way off still, but a working analogue to the essential element of the brain’s networks, the synapse, appears closer at hand now.

That’s because a device that draws inspiration from batteries now appears surprisingly well suited to run artificial neural networks. Called electrochemical RAM (ECRAM), it is giving traditional transistor-based AI an unexpected run for its money—and is quickly moving toward the head of the pack in the race to develop the perfect artificial synapse. Researchers recently reported a string of advances at this week’s IEEE International Electron Device Meeting (IEDM 2022) and elsewhere, including ECRAM devices that use less energy, hold memory longer, and take up less space.

Keep Reading ↓Show less