The December 2022 issue of IEEE Spectrum is here!

Close bar

The Internet of Disposable Things Will Be Made of Paper and Plastic Sensors

For disposable sensors, silicon will never be the right fit—but cheaper tech is nearly here

11 min read
Photo: Dan Saelinger
Photo: Dan Saelinger

The year is 2028. It’s 8 p.m. on a Wednesday night and you’re famished. You’re staring wistfully at the only remaining item in your refrigerator: a package of sausages with an unappetizing grayish hue. Ugh. Did they always look like that? Are they still safe to eat? In 2018, you’d have to rely on your sense of smell and take a gamble. But in 2028, you might simply wave your smartphone over the package. The smartphone interrogates the package’s embedded sensor, which measures the concentration of gases associated with meat decomposition. The smartphone displays the message “Safe to eat within the next 20 hours,” and then offers a list of recipes for cooking with sausages. Too hungry to bother with the recipes, you tear open the package, toss the sausages into a frying pan, and discard the package—along with its sensor technology.

This imagined scene of salvation by smartphone captures just one of many anticipated Internet of Things applications. IoT is possible now because of the convergence of low-cost, low-power components, specifically microprocessors, cellular radios, Wi-Fi radios, and MEMS sensors. There’s also a proven market for aggregated IoT data on consumer behaviors, known as big data. IHS Markit, a research firm that tracks and analyzes the electronics industry, predicts that the global volume of IoT devices will more than quadruple, from 27 billion connected devices in 2017 to 125 billion in 2030.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Video Friday: Humanoid Soccer

Your weekly selection of awesome robot videos

4 min read
Humans and human-size humanoid robots stand together on an indoor soccer field at the beginning of a game

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

CoRL 2022: 14–18 December 2022, AUCKLAND, NEW ZEALAND
ICRA 2023: 29 May–2 June 2023, LONDON

Enjoy today’s videos!

Keep Reading ↓Show less
Array of devices on a chip

This analog electrochemical memory (ECRAM) array provides a prototype for artificial synapses in AI training.

IBM research

How far away could an artificial brain be? Perhaps a very long way off still, but a working analogue to the essential element of the brain’s networks, the synapse, appears closer at hand now.

That’s because a device that draws inspiration from batteries now appears surprisingly well suited to run artificial neural networks. Called electrochemical RAM (ECRAM), it is giving traditional transistor-based AI an unexpected run for its money—and is quickly moving toward the head of the pack in the race to develop the perfect artificial synapse. Researchers recently reported a string of advances at this week’s IEEE International Electron Device Meeting (IEDM 2022) and elsewhere, including ECRAM devices that use less energy, hold memory longer, and take up less space.

Keep Reading ↓Show less

Fourth Generation Digitizers With Easy-to-Use API

Learn about the latest generation high-performance data acquisition boards from Teledyne

1 min read

In this webinar, we explain the design principles and operation of our fourth-generation digitizers with a focus on the application programming interface (API).

Register now for this free webinar!

Keep Reading ↓Show less