The July 2022 issue of IEEE Spectrum is here!

Close bar

The Internet of Disposable Things Will Be Made of Paper and Plastic Sensors

For disposable sensors, silicon will never be the right fit—but cheaper tech is nearly here

11 min read
Photo: Dan Saelinger
Photo: Dan Saelinger

The year is 2028. It’s 8 p.m. on a Wednesday night and you’re famished. You’re staring wistfully at the only remaining item in your refrigerator: a package of sausages with an unappetizing grayish hue. Ugh. Did they always look like that? Are they still safe to eat? In 2018, you’d have to rely on your sense of smell and take a gamble. But in 2028, you might simply wave your smartphone over the package. The smartphone interrogates the package’s embedded sensor, which measures the concentration of gases associated with meat decomposition. The smartphone displays the message “Safe to eat within the next 20 hours,” and then offers a list of recipes for cooking with sausages. Too hungry to bother with the recipes, you tear open the package, toss the sausages into a frying pan, and discard the package—along with its sensor technology.

This imagined scene of salvation by smartphone captures just one of many anticipated Internet of Things applications. IoT is possible now because of the convergence of low-cost, low-power components, specifically microprocessors, cellular radios, Wi-Fi radios, and MEMS sensors. There’s also a proven market for aggregated IoT data on consumer behaviors, known as big data. IHS Markit, a research firm that tracks and analyzes the electronics industry, predicts that the global volume of IoT devices will more than quadruple, from 27 billion connected devices in 2017 to 125 billion in 2030.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

When Gamers Get Nasty

Researchers grapple with subjectivity as they develop aIgorithms to detect toxicity in online gaming

2 min read
A man wearing a headset is seen in a dark room playing video games
Getty Images

Online gaming is a chance for players to come together, socialize and enjoy some friendly competition. Unfortunately, this enjoyable activity can be hindered by abusive language and toxicity, negatively impacting the gaming experience and causing psychological harm. Gendered and racial toxicity, in particular, are all too common in online gaming.

To combat this issue, various groups of researchers have been developing AI models that can detect toxic behavior in real-time as people play. One group recently developed a new model, which is described in a study published May 23 in IEEE Transactions on Games. While the model can detect toxicity with a fair amount of accuracy, its development demonstrates just how challenging it can be to determine what is considered toxic—a subjective matter.

Keep Reading ↓Show less

Quantum Computing for Dummies

New guide helps beginners run quantum algorithms on IBM's quantum computers over the cloud

3 min read
An image of the inside of an IBM quantum computer.

Quantum computers may one day rapidly find solutions to problems no regular computer might ever hope to solve, but there are vanishingly few quantum programmers when compared with the number of conventional programmers in the world. Now a new beginner's guide aims to walk would-be quantum programmers through the implementation of quantum algorithms over the cloud on IBM's publicly available quantum computers.

Whereas classical computers switch transistors either on or off to symbolize data as ones or zeroes, quantum computers use quantum bits, or "qubits," which because of the peculiar nature of quantum physics can exist in a state called superposition where they are both 1 and 0 at the same time. This essentially lets each qubit perform two calculations at once. The more qubits are quantum-mechanically linked, or entangled (see our explainer), within a quantum computer, the greater its computational power can grow, in an exponential fashion.

Keep Reading ↓Show less

Improved Dynamic Range for Pulse Detection

Achieving an unprecedented combination of dynamic range and sampling rate for pulse data acquisition

1 min read

Join Teledyne SP Devices for an introduction to our Pulse Detection Range eXtension (PDRX) technology. It achieves a dynamic range equivalent to 16-bit analog-to-digital converters (ADCs) while exceeding the sampling rate supported by commercially available devices. It is ideal for pulse capture in applications such as mass spectrometry. Register now for this free webinar!

Keep Reading ↓Show less