The December 2022 issue of IEEE Spectrum is here!

Close bar

The Hunt for the Kill Switch

Are chip makers building electronic trapdoors in key military hardware? The Pentagon is making its biggest effort yet to find out

14 min read
The Hunt for the Kill Switch
Photo: James Archer/AnatomyBlue

Last September, Israeli jets bombed a suspected nuclear installation in northeastern Syria. Among the many mysteries still surrounding that strike was the failure of a Syrian radar—supposedly state-of-the-art—to warn the Syrian military of the incoming assault. It wasn’t long before military and technology bloggers concluded that this was an incident of electronic warfare—and not just any kind.

Post after post speculated that the commercial off-the-shelf microprocessors in the Syrian radar might have been purposely fabricated with a hidden “backdoor” inside. By sending a preprogrammed code to those chips, an unknown antagonist had disrupted the chips’ function and temporarily blocked the radar.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
Colorful chip with wires coming out of it surrounded by large metal plates.

Engineers probe the performance of noisy bits that, when working together, may solve some problems better than quantum computers.

Lang Zeng/Beihang University

A large universal quantum computer is still an engineering dream, but machines designed to leverage quantum effects to solve specific classes of problems—such as D-wave’s computers—are alive and well. But an unlikely rival could challenge these specialized machines: computers built from purposely noisy parts.

This week at the IEEE International Electron Device Meeting (IEDM 2022), engineers unveiled several advances that bring a large-scale probabilistic computer closer to reality than ever before.

Keep Reading ↓Show less

How to Stake Electronic Components Using Adhesives

Staking provides extra mechanical support for various electronic parts

2 min read
Adhesive staking of DIP component on a circuit board using Master Bond EP17HTDA-1.

The main use for adhesive staking is to provide extra mechanical support for electronic components and other parts that may be damaged due to vibration, shock, or handling.

Master Bond

This is a sponsored article brought to you by Master Bond.

Sensitive electronic components and other parts that may be damaged due to vibration, shock, or handling can often benefit from adhesive staking. Staking provides additional mechanical reinforcement to these delicate pieces.

Keep Reading ↓Show less