The EU's Inability to Define Nanotechnology Stalls Regulatory Policy

It comes down to whether to define nanotechnology as "how much" or "how many"

2 min read
The EU's Inability to Define Nanotechnology Stalls Regulatory Policy

I am tempted to start this entry with one of the numerous bureaucrat/light bulb jokes but add a European twist that whatever the number they first need to define what a light bulb is.

Unfortunately, this is no joke. After some years of trying to arrive at an “applicable” definition for nanotechnology as opposed to a “working” definition, the European Commission is still not ready to settle on one.

After sending out their draft definition for public input last year, the coordinator of the commission charged with developing the definition, Henrik Laursen feels the matter is still unsettled.

"It is clear that at a certain level many stakeholders are saying different things, and there is no absolute scientific definition," Laursen commented.

The hesitance to settle on a definition is due to the fact that whatever is finally arrived at will immediately dictate policy. The idea being that it’s better to get it right from the beginning rather than potentially screw up the development of nanotechnology products or risk human health and the environment with a regulatory framework built around a faulty definition.

"We still have some decisions to take but what we will come up with eventually will not be a working definition, it will be a definition that will be applicable,” Laursen is quoted as saying. “There is no room for us to introduce a definition by trial and error, we are expected to make sure we act and we need to come up with something."

The crux of the problem seems to hinge on whether they should base the definition around the number of nanoparticles in a given material or the weight of the nanoparticles in the material.

On the one hand, the European Chemical Industry Council (Cefic) is in favor of a weight-based definition since “"Weight is generally used in all chemical legislation and test procedures…” and on the other EU's scientific committee on emerging and newly identified health risks (SCENIHR) argues that “the potential hazards of using these particles relates to the number of them within a particular product."

If I were to flip a coin, it appears it’s going to go in the direction of number of nanoparticles. But if we take the old toxicity formula Hazard x Exposure = Risk, it’s hard to see where “exposure” is represented in this definition.

It makes the approach of the US Food & Drug Administration as outlined by Carlos Peña, director of emerging technology programmes of the FDA, seem not only more workable but more effective. Peña explains that instead of focusing on a definition of nanotechnology, the FDA is instead investigating how nanoparticles and materials are being used in different sectors and making sure that the regulations for those sectors (i.e. food, drugs and cosmetics) are adequate to address their introduction.

The Conversation (0)

Two Startups Are Bringing Fiber to the Processor

Avicena’s blue microLEDs are the dark horse in a race with Ayar Labs’ laser-based system

5 min read
Diffuse blue light shines from a patterned surface through a ring. A blue cable leads away from it.

Avicena’s microLED chiplets could one day link all the CPUs in a computer cluster together.


If a CPU in Seoul sends a byte of data to a processor in Prague, the information covers most of the distance as light, zipping along with no resistance. But put both those processors on the same motherboard, and they’ll need to communicate over energy-sapping copper, which slow the communication speeds possible within computers. Two Silicon Valley startups, Avicena and Ayar Labs, are doing something about that longstanding limit. If they succeed in their attempts to finally bring optical fiber all the way to the processor, it might not just accelerate computing—it might also remake it.

Both companies are developing fiber-connected chiplets, small chips meant to share a high-bandwidth connection with CPUs and other data-hungry silicon in a shared package. They are each ramping up production in 2023, though it may be a couple of years before we see a computer on the market with either product.

Keep Reading ↓Show less