The Biometric Wallet

Palm vein scanners could eventually replace your wallet with your hand

9 min read
Illustration of a hand.
Illustration: Bryan Christie Design

One of the most notorious ATM scams in Japan started at a posh golf club in the green hills of Gunma prefecture. In 2004 a ring of thieves that included a club employee installed tiny cameras in the club’s locker room to record members typing in their four-digit locker codes. Then, while the golfers were out on the links, the thieves opened the lockers and used “skimming” devices to copy data off the magnetic stripes on club members’ bank cards.

The crooks transferred the data onto the mag stripes of blank cards. Then they started testing those cards in ATMs, checking to see how many of the golfers had used the same four-digit number for both their locker codes and their bank personal identification numbers (PINs). The answer: plenty. By the time the police arrested seven members of the gang in January 2005, the crooks had stolen more than 300 million yen (nearly US $4 million) from more than 300 victims.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

AI Goes To K Street: ChatGPT Turns Lobbyist

Automated influence campaigns could spell trouble for society

3 min read
text bubble with American flag against a white background
iStock

Concerns around how professional lobbyists distort the political process are nothing new. But new evidence suggests their efforts could soon be turbocharged by increasingly powerful language AI. A proof-of-concept from a Stanford University researcher shows that the technology behind internet sensation ChatGPT could help automate efforts to influence politicians.

Political lobbyists spend a lot of time scouring draft bills to asses if they’re pertinent to their clients’ objectives, and then drafting talking points for speeches, media campaigns, and letters to Congress designed to influence the direction of the legislation. Given recent breakthroughs in the ability of AI-powered services like ChatGPT to analyze and generate text, John Nay, a fellow at the Stanford Center for Legal Informatics, wanted to investigate whether these models could takeover some of that work.

Keep Reading ↓Show less

When Breathing Sciences Lead to a Mobile Life-Support Device

The compact unit is equipped with an innovative ventilator that recovers oxygen exhaled by the patient

5 min read
A soldier carrying a MOVES SLC portable life support unit walks over to an injured person on the ground.

Thornhill Medical's mobile life-support device, called MOVES SLC, has been used by military medical teams for five years. The unit can be slung across the shoulder and includes a circle-circuit ventilator and oxygen concentrator that eliminate the need to carry heavy, dangerous high pressure O2 cylinders.

Thornhill Medical

This is a sponsored article brought to you by LEMO.

A bomb explodes — medical devices set to action.

It is only in war that both sides of human ingenuity coexist so brutally. On the one side, it innovates to wound and kill, on the other it heals and saves lives. Side by side, but viscerally opposed.

Dr. Joe Fisher is devoted to the light side of human ingenuity, medicine. His research at Toronto’s University Health Network has made major breakthroughs in understanding the absorption and use of oxygen by the body. Then, based on the results, he developed new, highly efficient methods of delivering oxygen to patients.

In 2004, together with other physicians and engineers, he created a company to develop solutions based on his innovations. He named it after the Toronto neighborhood where he still lives — Thornhill Medical.

Keep Reading ↓Show less
{"imageShortcodeIds":["32836618"]}