Close

The Battle Between ARM and Intel Gets Real

ARM servers and Intel smartphones are coming soon

4 min read

There are two giants in the computer processor industry. One is Intel, which builds most of the processors in today’s PCs and servers. The other is ARM Holdings, in Cambridge, England, which thanks to its vast ecosystem of partners has established near-complete dominance of the market for the core logic inside smartphones and tablets.


But the demand for energy-efficient chips is reshaping the industry. As the PC market flattens, Intel aims to capture a sizable chunk of the rapidly growing mobile market, which rose to nearly half a billion smartphones in 2011. And chip designers in ARM’s camp are eyeing a US $50 billion server market, fueled by the rise of social networking and cloud computing. 


Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

A Circuit to Boost Battery Life

Digital low-dropout voltage regulators will save time, money, and power

11 min read
Image of a battery held sideways by pliers on each side.
Edmon de Haro

YOU'VE PROBABLY PLAYED hundreds, maybe thousands, of videos on your smartphone. But have you ever thought about what happens when you press “play”?

The instant you touch that little triangle, many things happen at once. In microseconds, idle compute cores on your phone's processor spring to life. As they do so, their voltages and clock frequencies shoot up to ensure that the video decompresses and displays without delay. Meanwhile, other cores, running tasks in the background, throttle down. Charge surges into the active cores' millions of transistors and slows to a trickle in the newly idled ones.

Keep Reading ↓ Show less