The July 2022 issue of IEEE Spectrum is here!

Close bar

Tech Titans Building Boom

Google, Microsoft, and other Internet giants race to build the mega data centers that will power cloud computing

12 min read
Illustration of a data center.
The Million-Server Data Center: Today’s most advanced data centers house tens of thousands of servers. what would it take to house 1 million?
Illustration: Bryan Christie Design

The serene countryside around the Columbia River in the northwestern United States has emerged as a major, and perhaps unexpected, battleground among Internet powerhouses. That’s where Google, Microsoft, Amazon, and Yahoo have built some of the world’s largest and most advanced computer facilities: colossal warehouses packed with tens of thousands of servers that will propel the next generation of Internet applications. Call it the data center arms race.

The companies flocked to the region because of its affordable land, readily available fiber-optic connectivity, abundant water, and even more important, inexpensive electricity. These factors are critical to today’s large-scale data centers, whose sheer size and power needs eclipse those of the previous generation by one or even two orders of magnitude.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

This Wearable Neck Patch Can Diagnose Concussions

Self-powered sensors convert neck strain into electrical pulses to detect head trauma in athletes

4 min read
image of back of man's head and shoulders with a patch taped to his lower neck; right image is a time lapse image of a man's head extending far forward and back, simulating a case of whiplash

The prototype patch in this research is shown in (a) on the left; on the right (b) is the kind of head rotation that can yield an electrical response from the patch.

Juan Pastrana

Nelson Sepúlveda was sitting in the stands at Spartan Stadium, watching his hometown Michigan State players bash heads with their cross-state football rivals from the University of Michigan, when he had a scientific epiphany.

Perhaps the nanotechnologies he had been working on for years—paper-thin devices known as ferroelectret nanogenerators that convert mechanical energy into electrical energy—could help save these athletes from the ravages of traumatic brain injury.

Keep Reading ↓Show less

Video Friday: PoKeBo Cubes

Your weekly selection of awesome robot videos

2 min read
A young girl looks at a cluster of three simple robots facing each other on a table

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

RoboCup 2022: 11 July–17 July 2022, BANGKOK
IEEE CASE 2022: 20 August–24 August 2022, MEXICO CITY
CLAWAR 2022: 12 September–14 September 2022, AZORES, PORTUGAL
ANA Avatar XPRIZE Finals: 4 November–5 November 2022, LOS ANGELES
CoRL 2022: 14 December–18 December 2022, AUCKLAND, NEW ZEALAND

Enjoy today’s videos!

Keep Reading ↓Show less

A Multiphysics Approach to Designing Fuel Cells for Electric Vehicles

White paper on fuel cell modeling and simulation

1 min read
Comsol Logo
Comsol

Fuel cell electric vehicles (FCEVs) often reach higher energy density and exhibit greater efficiency than battery EVs; however, they also have high manufacturing costs, limited service life, and relatively low power density.

Modeling and simulation can improve fuel cell design and optimize EV performance. Learn more in this white paper.