Physics Nobel for why the Big Bang wasn't a big bust

From our intrepid intern, Monica Heger:

The Nobel Prize in physics was awarded today for discoveries in subatomic physics. Yoichiro Nambu, from the Enrico Fermi Institute at the University of Chicago won half the award for his discovery of the mechanism of spontaneous broken symmetry in subatomic physics. Two Japanese physicists, Makoto Kobayashi from the High Energy Accelerator Research Organization and Toshihide Maskawa from the Yukawa Institute for Theoretical Physics at Kyoto University, split the other half of the award for their discovery of the origin of broken symmetry, which predicts the existence of at least three families of quarks, a fundamental particle.

Broken symmetry lies behind the very nature of our existence. At the time of the Big Bang, if equal amounts of matter and antimatter were created, they theoretically would have destroyed each other. Instead, that symmetry was broken, allowing for the existence of our universe. Scientists still do not know how that symmetry was broken.

The three Nobel winners all explained broken symmetry within the framework of the existing laws of physics. Kobayashi and Maskawa were only able to do this by expanding broken symmetry to include three new families of quarks. The quarks they described in 1972 have only recently been observed in laboratories by particle accelerators.


Tech Talk

IEEE Spectrum’s general technology blog, featuring news, analysis, and opinions about engineering, consumer electronics, and technology and society, from the editorial staff and freelance contributors.

Newsletter Sign Up

Sign up for the Tech Alert newsletter and receive ground-breaking technology and science news from IEEE Spectrum every Thursday.