The December 2022 issue of IEEE Spectrum is here!

Close bar

Taming Wind Power With Better Forecasts

Sophisticated weather simulations are making wind power more grid friendly

12 min read
Taming Wind Power With Better Forecasts
Photo: iStockphoto

img of Doppler radar returns blended into the VDRASPicture This: Doppler radar returns blended into the Variational Doppler Radar Analysis System (VDRAS) can give utilities information about the current wind situation and likely near-term changes to come. In this example, covering northeastern Colorado and neighboring states, the gray band shows an area in which winds converge, causing lower wind speeds over wind farms locally and a likelihood of decreasing wind speeds over the next couple of hours. The red areas represent faster winds moving into the region that will increase the amount of power produced by wind turbines.Image: NCAR

Wind energy. It’s clean. It’s renewable. Its potential is enormous. But to draw energy from the wind and send it to people’s homes reliably and efficiently, you have to know when the wind will blow and when it won’t. When it stops or changes rapidly, you have to be ready to substitute power from another source. And because such sources aren’t always available at a moment’s notice, you need this information many hours and even several days ahead.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Rory Cooper’s Wheelchair Tech Makes the World More Accessible

He has introduced customized controls and builds wheelchairs for rough terrain

6 min read
portrait of a man in a navy blue polo with greenery in the background
Abigail Albright

For more than 25 years, Rory Cooper has been developing technology to improve the lives of people with disabilities.

Cooper began his work after a spinal cord injury in 1980 left him paralyzed from the waist down. First he modified the back brace he was required to wear. He then turned to building a better wheelchair and came up with an electric-powered version that helped its user stand up. He eventually discovered biomedical engineering and was inspired to focus his career on developing assistive technology. His inventions have helped countless wheelchair users get around with more ease and comfort.

Keep Reading ↓Show less

Intel’s Take on the Next Wave of Moore’s Law

Ann B. Kelleher explains what's new 75 years after the transistor's invention

4 min read
image of a black and gold computer chip against a black background

Intel's Ponte Vecchio processor


The next wave of Moore’s Law will rely on a developing concept called system technology co-optimization, Ann B. Kelleher, general manager of technology development at Intel told IEEE Spectrum in an interview ahead of her plenary talk at the 2022 IEEE Electron Device Meeting.

“Moore’s Law is about increasing the integration of functions,” says Kelleher. “As we look forward into the next 10 to 20 years, there’s a pipeline full of innovation” that will continue the cadence of improved products every two years. That path includes the usual continued improvements in semiconductor processes and design, but system technology co-optimization (STCO) will make the biggest difference.

Keep Reading ↓Show less

Designing Fuel Cell Systems Using System-Level Design

Modeling and simulation in Simulink and Simscape

1 min read
Designing Fuel Cell Systems Using System-Level Design

Design and simulate a fuel cell system for electric mobility. See by example how Simulink® and Simscape™ support multidomain physical modeling and simulation of fuel cell systems including thermal, gas, and liquid systems. Learn how to select levels of modeling fidelities to meet your needs at different development stages.