Close

Synthetic Skin Gets a Second Life

German automation could make engineered skin affordable

2 min read

13 July 2009—Producing synthetic skin for grafts and testing the safety of drugs and chemicals is possible today, but it is a highly complex process requiring extensive manual work. A number of ventures that have tried to produce synthetic skin in large quantities have failed, largely due to a lack of automation in their manufacturing. But a team of scientists and engineers from several units of Germany’s Fraunhofer-Gesellschaft believe they can make engineered tissue widely available using a fully automated process they recently demonstrated.

Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology worked with colleagues at the Fraunhofer institutes for Production Technology, Manufacturing Engineering and Automation, and Cell Therapy and Immunology to develop what they claim to be the first fully automated system to produce artificial skin, consisting of two layers with different cell types. It’s an ”almost perfect copy of the human skin,” says Professor Heike Mertsching, one of the coordinators of Fraunhofer’s Automated Tissue Engineering on Demand project.

Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

This CAD Program Can Design New Organisms

Genetic engineers have a powerful new tool to write and edit DNA code

11 min read
A photo showing machinery in a lab

Foundries such as the Edinburgh Genome Foundry assemble fragments of synthetic DNA and send them to labs for testing in cells.

Edinburgh Genome Foundry, University of Edinburgh

In the next decade, medical science may finally advance cures for some of the most complex diseases that plague humanity. Many diseases are caused by mutations in the human genome, which can either be inherited from our parents (such as in cystic fibrosis), or acquired during life, such as most types of cancer. For some of these conditions, medical researchers have identified the exact mutations that lead to disease; but in many more, they're still seeking answers. And without understanding the cause of a problem, it's pretty tough to find a cure.

We believe that a key enabling technology in this quest is a computer-aided design (CAD) program for genome editing, which our organization is launching this week at the Genome Project-write (GP-write) conference.

With this CAD program, medical researchers will be able to quickly design hundreds of different genomes with any combination of mutations and send the genetic code to a company that manufactures strings of DNA. Those fragments of synthesized DNA can then be sent to a foundry for assembly, and finally to a lab where the designed genomes can be tested in cells. Based on how the cells grow, researchers can use the CAD program to iterate with a new batch of redesigned genomes, sharing data for collaborative efforts. Enabling fast redesign of thousands of variants can only be achieved through automation; at that scale, researchers just might identify the combinations of mutations that are causing genetic diseases. This is the first critical R&D step toward finding cures.

Keep Reading ↓ Show less