The December 2022 issue of IEEE Spectrum is here!

Close bar

Stop That Train!

Electronically controlled railway brakes may finally displace a 150-year-old technology

14 min read
Stop That Train!
Whoa! A Norfolk Southern railway freight train equipped with a new electronically controlled pneumatic (Ecp) braking system comes down a mountain. it is the second such train that the company hasequipped with Ecp brakes.
Photo: New York Air Brake

George Westinghouse’s many inventions rank him with Thomas A. Edison and Werner von Siemens as founding fathers of our electrified world. Yet, ironically, Westinghouse’s first invention, a railroad brake he patented in 1869, was actuated not by electrons but by air. To this day, most railroads rely on that system’s principle of releasing air from a pressurized pipe that runs the length of the train and brakes the cars one after the other, at a rate of 152 meters per second.

To compound the irony, some of Westinghouse’s early competitors proposed electrical mechanisms, but Westinghouse himself rejected these as unreliable. In the past decade, however, the idea has reemerged in a hybrid system that uses an electronic system to control a pneumatic one, so as to set the brakes in all the cars simultaneously. So obvious are the advantages of the new technology—called electronically controlled pneumatic braking, or ECP for short—that its manufacturers are optimistic it will eventually sweep the field.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Poll: Would You Want to Work a Shorter Week?

Weigh in with your thoughts on a four-day workweek

2 min read
Person holding a giant sized pencil standing next to a giant sized calendar with days crossed out to show a four-day workweek.

When I worked for a company in Texas a few years ago, one of the benefits I enjoyed was a four-and-a-half-day workweek. The system enabled my colleagues and me to run some personal errands, see our doctors, and pick up our kids from school, among other activities.

The COVID-19 pandemic required many companies to adopt a flexible work schedule to keep their operations open. Many allowed their employees to work from home full time. Nowadays plenty of those employers are trying to persuade their workers to return to the office full time, but they are facing some resistance.

One solution some companies are trying is a four-day, 32-hour workweek for the same pay.

​Does your company offer a four-day workweek?

Would you like to work a four-day workweek?

Keep Reading ↓Show less

Xiaomi’s Humanoid Drummer Beats Expectations

Solving drum-playing helped quest for whole-body control

3 min read
A black and white humanoid robot sits at an electronic drum kit

When Xiaomi announced its CyberOne humanoid robot a couple of months back, it wasn’t entirely clear what the company was actually going to do with the robot. Our guess was that rather than pretending that CyberOne was going to have some sort of practical purpose, Xiaomi would use it as a way of exploring possibilities with technology that may have useful applications elsewhere, but there were no explicit suggestions that there would be any actual research to come out of it. In a nice surprise, Xiaomi roboticists have taught the robot to do something that is, if not exactly useful, at least loud: to play the drums.

Keep Reading ↓Show less

Solving Automotive Design Challenges With Simulation

Learn about low-frequency electromagnetic simulations and see a live demonstration of COMSOL Multiphysics software

1 min read

The development of new hybrid and battery electric vehicles introduces numerous design challenges. Many of these challenges are static or low-frequency electromagnetic by nature, as the devices involved in such designs are much smaller than the operating wavelength. Examples include sensors (such as MEMS sensors), transformers, and motors. Many of these challenges include multiple physics. For instance, sensors activated by acoustic energy as well as heat transfer in electric motors and power electronics combine low-frequency electromagnetic simulations with acoustic and heat transfer simulations, respectively.

Multiphysics simulation makes it possible to account for such phenomena in designs and can provide design engineers with the tools needed for developing products more effectively and optimizing device performance.

Keep Reading ↓Show less