Space Mountain

High in the Chilean Andes, the southern hemisphere's biggest radio observatory sets up shop

3 min read

Sitting on a high, arid plateau in the Chilean Andes, a new telescope known as the Atacama Pathfinder Experiment (APEX)--the largest submillimeter radio telescope now operating in the southern hemisphere--officially opened for business in late September [see photo, " "]. IEEE Spectrum was in the neighborhood and dropped in for the inaugural ceremony.

The Chajnantor plain, located at a height of 5100 meters in Chile's Atacama Desert, said to be the driest place on Earth, is about as high and dry as you can get. The 14-kilometer dirt road leading up to the site demands skillful four-wheel maneuvering--in rain or snow or at night, it's downright treacherous. The oxygen-poor air at the summit leaves many a visitor dizzy and disoriented, including this reporter. "Some people have no problem, some people have to use oxygen, and a few get sick and have to be taken down to lower altitudes quickly," notes Lars-Ake Nyman, APEX's station manager. The staff keeps a supply of portable oxygen tanks on hand at all times for the faint of heart.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
Two men fix metal rods to a gold-foiled satellite component in a warehouse/clean room environment

Technicians at Northrop Grumman Aerospace Systems facilities in Redondo Beach, Calif., work on a mockup of the JWST spacecraft bus—home of the observatory’s power, flight, data, and communications systems.


For a deep dive into the engineering behind the James Webb Space Telescope, see our collection of posts here.

When the James Webb Space Telescope (JWST) reveals its first images on 12 July, they will be the by-product of carefully crafted mirrors and scientific instruments. But all of its data-collecting prowess would be moot without the spacecraft’s communications subsystem.

The Webb’s comms aren’t flashy. Rather, the data and communication systems are designed to be incredibly, unquestionably dependable and reliable. And while some aspects of them are relatively new—it’s the first mission to use Ka-band frequencies for such high data rates so far from Earth, for example—above all else, JWST’s comms provide the foundation upon which JWST’s scientific endeavors sit.

Keep Reading ↓Show less