These Solar Cells Produce Electricity at Night

Researchers used radiative cooling to generate enough to power LEDs or charge a cellphone

2 min read
a row of solar cells underneath a starry nighttime sky

By taking advantage of the temperature difference between a solar panel and ambient air, engineers have made solar cells that can produce electricity at night.

Compared to the 100 to 200 watts per square meter that solar cells produce when the sun is shining, the nighttime production is a trickle at 50 mW/m2. “But it is already financially interesting for low-power-density applications like LED lights, charging a cellphone, or trying to power small sensors,” says Shanhui Fan, a professor of electrical engineering at Stanford University who published the work along with coauthors in Applied Physics Letters.

Fan and his colleagues harnessed the concept of radiative cooling, the phenomenon by which materials radiate heat into the sky at night after absorbing solar energy all day and that others have tapped before to make cooling paint and energy-efficient air-conditioning. Because of this effect, the temperature of a standard solar cell pointing at the sky at night falls below ambient air temperature. This generates a heat flow from the ambient air to the solar cell. “That heat flow can be harvested to generate power,” Fan says.

To do that, the researchers integrated a photovoltaic cell with a commercial thermoelectric generator (TEG) module, which converts temperature difference into electrical power. The TEG sits underneath the solar cell, and an aluminum sheet between the two conducts heat from the solar cell to the TEG. The other side of the TEG connects via a heat sink to ambient air.

While existing solar panels could be retrofitted with a TEG to produce power at night, Fan says, the crucial thing for the devices to work well together is to have very close thermal contact between solar cells and the TEG, a challenge that retrofit solutions will have to overcome.

The team tested their prototype TEG-integrated solar cell for three days in October 2021 on a rooftop in Stanford, Calif. The demonstration showed a nighttime power production of 50 mW/m2. The team estimates that in a hotter, drier climate, the same setup could generate up to 100 mW/m2.

Fan says there’s substantial room for improvement, because the conventional solar cell they used is not designed for radiative cooling. It emits heat waves in the mid-infrared range of wavelengths around 10 micrometers. By tweaking that emission wavelength, the solar cell could be made even cooler at night, which would increase the temperature difference, and ultimately the power that the TEG produces.

“In principle, it could be possible to engineer the thermal-emission property of the solar cell to optimize its radiative cooling performance without affecting solar performance,” Fan says. “Our theoretical calculations point to the possibility of a few hundred milliwatts or maybe even 1 watt.”

The Stanford team plans to engineer new solar cells to improve the nighttime power generation and also plan to scale up their prototype. Cost could be one barrier to scaling up the idea, since TEGs are typically made of expensive materials. The team has not done a detailed cost analysis, but Fan says that for an apples-to-apples comparison, you would have to compare their 24-hour solar cell with a nighttime setup in which you produce solar power during the day and then use a battery to get power at night.

Given the significantly longer lifetimes of TEG modules over a battery’s typical five years, Fan says that “our preliminary calculations indicate that there are application scenarios where thermoelectric may have the potential to outperform a battery approach.”

The Conversation (1)
Ricardo Benito 08 May, 2022

Excelente la performance de celdas solares en la noche con 50miliWatt/m2 saludos,, see you

Practical Power Beaming Gets Real

A century later, Nikola Tesla’s dream comes true

8 min read
This nighttime outdoor image, with city lights in the background, shows a narrow beam of light shining on a circular receiver that is positioned on the top of a pole.

A power-beaming system developed by PowerLight Technologies conveyed hundreds of watts of power during a 2019 demonstration at the Port of Seattle.

PowerLight Technologies

Wires have a lot going for them when it comes to moving electric power around, but they have their drawbacks too. Who, after all, hasn’t tired of having to plug in and unplug their phone and other rechargeable gizmos? It’s a nuisance.

Wires also challenge electric utilities: These companies must take pains to boost the voltage they apply to their transmission cables to very high values to avoid dissipating most of the power along the way. And when it comes to powering public transportation, including electric trains and trams, wires need to be used in tandem with rolling or sliding contacts, which are troublesome to maintain, can spark, and in some settings will generate problematic contaminants.

Keep Reading ↓ Show less