Smash This Robot

A soft robotic bug can survive being repeatedly smashed with a fly swatter

2 min read
Smash this robot insect
EPFL researchers developed soft robot insects powered by dielectric elastomer actuators. The robots survived being flattened by a fly swatter and after being peeled off from the surface, they continued moving.
Image: EPFL

Researchers at EPFL have developed a soft robotic insect that uses artificial soft muscles called dielectric elastomer actuators to drive tiny feet that propel the little bot along at a respectable speed. And since the whole thing is squishy and already mostly flat, you can repeatedly smash it into the ground with a fly swatter, and then peel it off and watch it start running again. Get ready for one of the most brutal robot abuse videos you’ve ever seen.

We’re obligated to point out that the version of the robot that survives being raged on with the swatter is a tethered one, not the autonomous version with the battery and microcontroller and sensors, which might not react so well to repeated batterings. But still, it’s pretty cool to see it get peeled right off and keep on going, and the researchers say they’ve been able to do this smash n’ peel eight times in a row without destroying the robot.

Powered by dielectric elastomer actuators

One of the tricky things about building robots like these (that rely on very high-speed actuation) is power—the power levels themselves are usually low, in the milliwatt range, but the actuators generally require several kilovolts to function, meaning that you need a bunch of electronics that can boost the battery voltage up to something you can use. Even miniaturized power systems are in the tens of grams, which is obviously impractical for a robot that weighs one gram or less. Dielectric elastomer actuators, or DEAs, are no exception to this, so the researchers instead used a stack of DEAs that could run at a significantly lower voltage. These low-voltage stacked DEAs (LVSDEAs, because more initialisms are better) run at just 450 volts, but cycle at up to 600 hertz, using power electronics weighing just 780 milligrams.

Robotic insect you can smash Each soft robot uses three LVSDEAs to operate three independent legs. Image: EPFL

The LVSDEA actuation is converted into motion by using flexible angled legs, similar to a bristlebot. One leg on each side allows the robot to turn, pivoting around a third supporting leg in the front. Top speed of the 190-mg tethered robot is 18 mm/s (0.5 body-lengths/s), while the autonomous version with an 800-g payload of batteries and electronics and sensors could move at 12 mm/s for 14 minutes before running out of juice. Interestingly, stiffening the structure of the robot by holding it in a curved shape with a piece of tape significantly increased its performance, nearly doubling its speed to 30 mm/s (0.85 body-lengths/s) and boosting its payload capacity as well.

What we’re all waiting for, of course, is a soft robot that can be smashable and untethered at the same time. This is always the issue with soft robots—they’re almost always just mostly soft, requiring either off-board power or rigid components in the form of electronics or batteries. The EPFL researchers say that they’re “currently working on an untethered and entirely soft version” in partnership with Stanford, which we’re very excited to see.

[ EPFL ]

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less