The February 2023 issue of IEEE Spectrum is here!

Close bar

Smart Sensors

New standard could save lives and money

7 min read
Image: Nicholas Eveleigh; Photo Manipulation: Laura Hoffman
Image: Nicholas Eveleigh; Photo Manipulation: Laura Hoffman

Chances are, your health and happiness rely on sensors, those ubiquitous little devices that tell us if a fridge is too cold, a nuclear reactor’s safety systems are operating, or a factory production line is processing components correctly. But sensors have a dirty little secret: it’s all too easy for them be in perfect working order, reporting all is well when, in fact, your milk is turning into a frozen block, the reactor’s safety system is impotent, and that factory has filled a warehouse with useless—and possibly dangerous—products.

Fortunately, help is on the way with a new standard for analog sensors, the most common kind in use today. The dirty little secret of sensors is calibration, the process by which data from a sensor are mapped to real-world conditions, and the new standard should help make miscalibration a thing of the past. Miscalibrated sensors can cause problems ranging in severity from a wasted morning’s research to what happened at the Bruce B nuclear generating station near Toronto in 2002. There it was discovered that a backup reactor shutdown system that had been operating for weeks, in what appeared to be working order, was actually incapable of catching a dangerous rise in radiation, owing to an incorrectly calibrated neutron detector.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Twistronic Yarns Harvest Energy From Movement

Novel fabrics could power wearables and potentially harvest energy from oceans

3 min read
Three SEM images show from top, 3 twisted slightly plied yarns, a plied harvester and a twist configuration, colorized to highlight the sections.

Twistrons, made from spun carbon nanotubes (CNTs), convert mechanical movement into electricity. UT Dallas researchers made a new kind of twistron by intertwining three individual strands of spun carbon nanotube fibers to make a single yarn, similar to the way conventional yarns used in textiles are constructed.

The University of Texas at Dallas

Novel yarns made with carbon nanotubes can generate electricity from mechanical energy better than any other material to date, a new study finds.

The high-tech yarns, known as “twistrons,” can be sewn into clothes to produce electricity from human motion or deployed in the ocean to harvest energy from waves, researchers say.

Keep Reading ↓Show less

Learn How Global Configuration Management and IBM CLM Work Together

In this presentation we will build the case for component-based requirements management

2 min read

This is a sponsored article brought to you by 321 Gang.

To fully support Requirements Management (RM) best practices, a tool needs to support traceability, versioning, reuse, and Product Line Engineering (PLE). This is especially true when designing large complex systems or systems that follow standards and regulations. Most modern requirement tools do a decent job of capturing requirements and related metadata. Some tools also support rudimentary mechanisms for baselining and traceability capabilities (“linking” requirements). The earlier versions of IBM DOORS Next supported a rich configurable traceability and even a rudimentary form of reuse. DOORS Next became a complete solution for managing requirements a few years ago when IBM invented and implemented Global Configuration Management (GCM) as part of its Engineering Lifecycle Management (ELM, formerly known as Collaborative Lifecycle Management or simply CLM) suite of integrated tools. On the surface, it seems that GCM just provides versioning capability, but it is so much more than that. GCM arms product/system development organizations with support for advanced requirement reuse, traceability that supports versioning, release management and variant management. It is also possible to manage collections of related Application Lifecycle Management (ALM) and Systems Engineering artifacts in a single configuration.

Keep Reading ↓Show less