The December 2022 issue of IEEE Spectrum is here!

Close bar

Smart Clothing Could Soon Be Part of Your Wardrobe

An e-textile expert talks about the future of garments with built-in electronics

4 min read
The Commuter X jacket from Jacquard by Google has a battery-operated snap tag on the sleeve that communicates with the wearer’s smartphone.
The Commuter X jacket from Jacquard by Google has a battery-operated snap tag on the sleeve that communicates with the wearer’s smartphone.
Photo: Google

THE INSTITUTEWearable technology, once the domain of rigid fitness wristbands and health monitors, is showing more of its softer side. High-tech companies and designers are increasingly moving to incorporate sensors to create smart clothing. By simply touching the cuff of a shirt, for example, a wearer might activate smartphone apps.

Google has teamed up with the Levi Strauss Co. to offer a clothing line, Jacquard by Google, that has conductive thread woven in. Its new Commuter X jacket [above], which sells for US $350, includes a battery-operated snap tag that lights up when the wearer’s smartphone receives a text message and vibrates when a ride-hailing car arrives.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Get unlimited IEEE Spectrum access

Become an IEEE member and get exclusive access to more stories and resources, including our vast article archive and full PDF downloads
Get access to unlimited IEEE Spectrum content
Network with other technology professionals
Establish a professional profile
Create a group to share and collaborate on projects
Discover IEEE events and activities
Join and participate in discussions

Economics Drives Ray-Gun Resurgence

Laser weapons, cheaper by the shot, should work well against drones and cruise missiles

4 min read
In an artist’s rendering, a truck is shown with five sets of wheels—two sets for the cab, the rest for the trailer—and a box on the top of the trailer, from which a red ray is projected on an angle, upward, ending in the silhouette of an airplane, which is being destroyed

Lockheed Martin's laser packs up to 300 kilowatts—enough to fry a drone or a plane.

Lockheed Martin

The technical challenge of missile defense has been compared with that of hitting a bullet with a bullet. Then there is the still tougher economic challenge of using an expensive interceptor to kill a cheaper target—like hitting a lead bullet with a golden one.

Maybe trouble and money could be saved by shooting down such targets with a laser. Once the system was designed, built, and paid for, the cost per shot would be low. Such considerations led planners at the Pentagon to seek a solution from Lockheed Martin, which has just delivered a 300-kilowatt laser to the U.S. Army. The new weapon combines the output of a large bundle of fiber lasers of varying frequencies to form a single beam of white light. This laser has been undergoing tests in the lab, and it should see its first field trials sometime in 2023. General Atomics, a military contractor in San Diego, is also developing a laser of this power for the Army based on what’s known as the distributed-gain design, which has a single aperture.

Keep Reading ↓Show less