The December 2022 issue of IEEE Spectrum is here!

Close bar

Setting the Record Straight on FutureGen and IGCC

An Op-Ed commentary in New York Times contains fundamental errors

2 min read

Gregg Easterbrook is a well-regarded environmental writer and a long-term contributor to the ultra-prestigious Atlantic Monthly. But I hope he never is the one to decide whether I get my next job or publication, because I'm about to correct two mistakes he makes in today’s New York Times. In “The Dirty War Against Clean Coal,” Easterbrook takes the Energy Department to task for resuscitating FutureGen, its futuristic clean-coal project. “This is part of a Washington tradition,” says Easterbrook, ”beginning pie-in-the-sky projects that create an excuse to avoid forms of conservation and greenhouse-gas reduction that are possible immediately. Companies including General Electric have alrady perfected technology to reduce emissions substantially, called 'integrated gasification combined cycle' [IGCC] power."

In other words, instead of going for an unproved new technology, the Department of Energy should stick with IGCC. But there's a problem here. FutureGen IS an IGCC plant and always has been so visualized. (In addition to gasifying coal, it would separate and capture all carbon and permanently store it away.)

There’s another problem. “The first commercial gasification power plant, designed by General Electric for Duke Energy, is being build in Indiana,” Easterbrook continues. Actually, two IGCC plants have been operating for many years: Tampa Electric’s Polk plant near Tampa, and Duke Energy’s Wabash River plant near Terre Haute, Indiana. (We're not bragging, because it's not exactly breaking news, but both ieee tv and IEEE Spectrum visited the Polk plant two summers ago, and descriptions can be found both at IEEE TV and in Spectrum magazine.) Per watthour of electricity produced, the Polk plant's is easily the most expensive in the whole country.

As long as the record is being set straight, Easterbrook’s straw-man conclusion also is very misleading. Green power, that is to say wind and solar, “simply cannot grow fast enough to eliminate the need for coal,” he says. But nobody is talking about eliminating our need for coal. What we can do is sharply reduce our reliance on coal, and to accomplish that, we can turn not only to wind but also to nuclear and gas-generated electricity. Per watt, nuclear eliminates for all practical purposes 100 percent of greenhouse gas emissions; natural gas cuts them about 50 perent.

 

 

 

 

The Conversation (0)
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less