Separating Work, Friends, and Family on Facebook Isn’t Easy

What happens when Facebook’s notion of openness runs afoul of the desire for a private life

0 min read
Facebook thumb icons

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

How to Turn the Lights Back on After a Blackout

Restarting the grid after a total failure is trickier than it may appear

4 min read
​A grid operator works in a control room.
Jacob Hannah/The New York Times/Redux

Restoring power quickly after a major blackout can mean the difference between life and death, but cold starting an entire electrical grid is a complex and delicate process. A hybrid computer model from Sandia National Laboratories that combines optimization, physical simulations and cognitive models of grid operators promises to come up with a fast and reliable plan to get the lights back on.

While power outages are always disruptive, they typically only impact smaller portions of the overall grid. A complete loss of power over the entire network is much more serious, and requires operators to effectively jump start the grid with so-called “black start” generators. This involves a complicated balancing act to avoid mismatches between energy generation and consumption, as different sections of the grid are gradually brought back online. Get it wrong and the grid can collapse again.

Keep Reading ↓Show less

Designing a Silicon Photonic MEMS Phase Shifter With Simulation

Engineers at EPFL used simulation to design photonic devices for enhanced optical network speed, capacity, and reliability

4 min read
Designing a Silicon Photonic MEMS Phase Shifter With Simulation
EPFL

This sponsored article is brought to you by COMSOL.

The modern internet-connected world is often described as wired, but most core network data traffic is actually carried by optical fiber — not electric wires. Despite this, existing infrastructure still relies on many electrical signal processing components embedded inside fiber optic networks. Replacing these components with photonic devices could boost network speed, capacity, and reliability. To help realize the potential of this emerging technology, a multinational team at the Swiss Federal Institute of Technology Lausanne (EPFL) has developed a prototype of a silicon photonic phase shifter, a device that could become an essential building block for the next generation of optical fiber data networks.

Keep Reading ↓Show less
{"imageShortcodeIds":["32366883","32366901","32366913"]}