Self-Driving Cars Will Be Ready Before Our Laws Are

Putting autonomous vehicles on the road isn’t just a matter of fine-tuning the technology

10 min read
Self-Driving Cars Will Be Ready Before Our Laws Are
Illustration: J.D. King

It is the year 2023, and for the first time, a self-driving car navigating city streets strikes and kills a pedestrian. A lawsuit is sure to follow. But exactly what laws will apply? Nobody knows. Today, the law is scrambling to keep up with the technology, which is moving forward at a breakneck pace, thanks to efforts by Apple, Audi, BMW, Ford [pdf], General Motors, Google, Honda, Mercedes, Nissan, Nvidia, Tesla, Toyota, and Volkswagen. Google’s prototype self-driving cars, with test drivers always ready to take control, are already on city streets in Mountain View, Calif., and Austin, Texas. In the second half of 2015, Tesla Motors began allowing owners (not just test drivers) to switch on its Autopilot mode.

The law now assumes that a human being is in the driver’s seat, which is why Google’s professional drivers and Tesla owners are supposed to keep their hands near the wheel and their eyes on the road. (Tesla’s cars use beeps and other warnings to make sure they do so.) That makes the vehicles street legal for now, but it doesn’t help speed the rollout of fully autonomous vehicles.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Video Friday: Robots Stock Up

Your weekly selection of awesome robot videos

3 min read
A black and white robot with a small head and a large arm sits on a mobile track on a blank white background

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

IEEE CASE 2022: 20–24 August 2022, MEXICO CITY
CLAWAR 2022: 12–14 September 2022, AZORES, PORTUGAL
IROS 2022: 23–27 October 2022, KYOTO, JAPAN
ANA Avatar XPRIZE Finals: 4–5 November 2022, LOS ANGELES
CoRL 2022: 14–18 December 2022, AUCKLAND, NEW ZEALAND

Enjoy today's videos!

Keep Reading ↓Show less

GPT Language Model Spells Out New Proteins

Human speech and protein structure are close enough for AI purposes

3 min read
3d model of a protein
iStockphoto

Human languages have much in common with proteins, at least in terms of computational modeling. This has led research teams to apply novel methods from natural language processing (NLP) to protein design. One of these—Birte Höcker’s protein design lab at Bayreuth University in Germany—describe ProtGPT2, a language model based on GPT-2, to generate novel protein sequences based on the principles of natural ones.

Just as letters from the alphabet form words and sentences, naturally occurring amino acids combine in different ways to form proteins. And protein sequences, just like natural languages, store structure and function in their amino acid sequence with extreme efficiency.

Keep Reading ↓Show less

GPIOs: Critical IP for Functional Safety Applications

Understand the safety mechanisms in an automotive-ready GPIO IP library suite to detect the faults in GPIO cells

1 min read
GPIOs: Critical IP for Functional Safety Applications

The prevalence and complexity of electronics and software in automotive applications are increasing with every new generation of cars. The critical functions within the system on a chip (SoC) involve hardware and software that perform automotive-related signal communication at high data rates to and from the components off-chip. Every SoC includes general purpose IOs (GPIOs) on its periphery.

For automotive SoCs, GPIO IP is typically developed as Safety Element out of Context and delivered with a set of Assumptions of Use. It is important that the GPIO blocks are treated as a safety related logic. In this role, GPIOs need safety analysis to mitigate any faults occurring in them before the result of fault occurrence causes a system-wide failure.

Keep Reading ↓Show less