The July 2022 issue of IEEE Spectrum is here!

Close bar

Self-Driving Cars Learn About Road Hazards Through Augmented Reality

Adding simulated vehicles to closed-course testing can train robocars to handle even the most unlikely scenarios

10 min read
A car with sensors on the bumper.
Mock City: Mcity is a city in miniature, with roads, traffic signals, and storefronts.
Photo: University of Michigan

For decades, anyone who wanted to know whether a new car was safe to drive could simply put it through its paces, using tests established through trial and error. Such tests might investigate whether the car can take a sharp turn while keeping all four wheels on the road, brake to a stop over a short distance, or survive a collision with a wall while protecting its occupants.

But as cars take an ever greater part in driving themselves, such straightforward testing will no longer suffice. We will need to know whether the vehicle has enough intelligence to handle the same kind of driving conditions that humans have always had to manage. To do that, automotive safety-assurance testing has to become less like an obstacle course and more like an IQ test.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Vanadium Anodes for Faster-charging, Longer-lived Batteries

Startup TyFast aims for 3-minute charging, 20,000-cycle life

3 min read
A foil rectangle labelled Tyfast, with two silver squares coming out of the top.

Startup Tyfast is making batteries based on a new anode material that allow it to charge in minutes and last for several thousands of charge cycles

Tyfast

To fulfill the vision of EVs that travel a thousand miles or phones that run for days on a single charge, most battery developers are racing to make batteries that can pack twice the energy in the same weight.

Not startup Tyfast, which is “approaching next-generation battery development in a counter-current direction,” says GJ la O’, CEO and cofounder of the 2021 spinoff from the University of California, San Diego.

Keep Reading ↓Show less

IEEE STEM Activity Kits Are In Demand at 150 U.S. Public Libraries

Kids can build robots, write code, and design video games

4 min read
Two boys and one girl standing in front of a computer monitor. On the left side of the monitor is a backpack containing a science activity kit.

These youngsters are checking out one of their local library’s IEEE-funded science activity kits.

John Zulaski

More than 150 public libraries throughout the central United States now lend out activity kits that let children explore just about any aspect of science, technology, engineering, and mathematics. The kids can check them out just like they would a book. The kits teach youngsters what engineers do, as well as how to code, build robots, design video games, and create animations.

The collections have been made possible by the IEEE Region 4 Science Kits for Public Libraries program with funding from Region 4 members and corporate sponsors. The SKPL program is the brainchild of IEEE Life Senior Member John A. Zulaski, the chair of the SKPL committee.

Keep Reading ↓Show less

Electromagnetic Simulations in Automotive Industry

Learn how an electromagnetic simulator can be applied to various scenarios in the automotive industry

1 min read
WIPL-D Logo
WIPL-D

This whitepaper shows several examples of how WIPL-D electromagnetic simulator can be applied to various scenarios in the automotive industry: a radar antenna mounted on a car bumper operating at 24 GHz, 40 GHz, and 77 GHz, an EM obstacle detection at 77 GHz, and vehicle-to-vehicle communication at 5.9 GHz. Download this free whitepaper now!