The October 2022 issue of IEEE Spectrum is here!

Close bar

Search Terms Indicate the Expansion of Nanotechnology

Vague definitions of nanotechnology hamper attempts to measure its impact; can search terms help?

2 min read
Search Terms Indicate the Expansion of Nanotechnology

Nanowerk, in its most recent Spotlight piece, has highlighted the work of two UC Davis researchers in analyzing the spread of nanotechnology research by using search terms within a scientific database that accesses over 10,000 scientific journals.

Minghua Zhang, a professor in Civil and Environmental Engineering at UC Davis, and Michael L. Grieneisen, a researcher in Zhang's AGIS Lab, have published their findings in the journal Small, in an article entitled "Nanoscience and Nanotechnology: Evolving Definitions and Growing Footprint on the Scientific Landscape."

The Nanowerk article points out that Zhang’s and Grieneisen’s work is based upon a Georgia Tech project called “Refining search terms for nanotechnology” that was published in 2008.

The UC Davis researchers added some carbon nanostructure search terms to the list—graphene, fullerene, buckyball—and excluded a few more terms from the search that may have had a “nano” prefix but weren’t really related to nanotechnology, such as “nanosatellite.” They ran the updated search terms through Web of Science Database (WoS) for the years from 1991 to 2010 and voilà.

The results showed the top five countries in terms of records were:

  • China (20 186)

  • USA (18 472)

  • Japan (6556)

  • Germany (6546)

  • South Korea (5278)

I am really only slightly surprised by these figures. Mainly, I was initially surprised that China was at the top of the list. Then I took a look back at where UC Davis researchers had done their search and where the Georgia Tech folk had decided to focus their queries.

The WoS queries I imagine spread a much wider net than Georgia Tech’s search through “key journals.”

I don’t want to malign anyone here, but I think it is altogether possible that papers published in journals outside of the top publications might rack up a lot query hits but mean little in terms of actual scientific impact.

The Conversation (0)

3D-Stacked CMOS Takes Moore’s Law to New Heights

When transistors can’t get any smaller, the only direction is up

10 min read
An image of stacked squares with yellow flat bars through them.
Emily Cooper

Perhaps the most far-reaching technological achievement over the last 50 years has been the steady march toward ever smaller transistors, fitting them more tightly together, and reducing their power consumption. And yet, ever since the two of us started our careers at Intel more than 20 years ago, we’ve been hearing the alarms that the descent into the infinitesimal was about to end. Yet year after year, brilliant new innovations continue to propel the semiconductor industry further.

Along this journey, we engineers had to change the transistor’s architecture as we continued to scale down area and power consumption while boosting performance. The “planar” transistor designs that took us through the last half of the 20th century gave way to 3D fin-shaped devices by the first half of the 2010s. Now, these too have an end date in sight, with a new gate-all-around (GAA) structure rolling into production soon. But we have to look even further ahead because our ability to scale down even this new transistor architecture, which we call RibbonFET, has its limits.

Keep Reading ↓Show less