The August 2022 issue of IEEE Spectrum is here!

Close bar

Seabed-Mining Robots Will Dig for Gold in Hydrothermal Vents

Nautilus Minerals will test its gear on the ocean floor in 2016

4 min read
Seabed-Mining Robots Will Dig for Gold in Hydrothermal Vents
Photo: Nautilus Minerals

imgLike a Tank: The heavy-duty equipment for mining the ocean floor, like the partially assembled machine shown here, is built to withstand punishing conditions 1,600 meters below the waves.Photo: Nautilus Minerals

For decades, futurists have predicted that commercial miners would one day tap the unimaginable mineral wealth of the world’s ocean floor. Soon, that subsea gold rush could finally begin: The world’s first deep-sea mining robots are poised to rip into rich deposits of copper, gold, and silver 1,600 meters down at the bottom of the Bismarck Sea, near Papua New Guinea. The massive machines, which are to be tested sometime in 2016, are part of a high-stakes gamble for the Toronto-based mining company Nautilus Minerals.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Artificial Synapses 10,000x Faster Than Real Thing

New protonic programmable resistors may help speed learning in deep neural networks

3 min read
Conceptual illustration shows a brain shape made of circuits on a multilayered chip structure.
Ella Maru Studio and Murat Onen

New artificial versions of the neurons and synapses in the human brain are up to 1,000 times smaller than neurons and at least 10,000 times faster than biological synapses, a study now finds.

These new devices may help improve the speed at which the increasingly common and powerful artificial intelligence systems known as deep neural networks learn, researchers say.

Keep Reading ↓Show less

Amazon to Acquire iRobot F​or $1.7 Billion

The deal will give the e-retail behemoth even more access to our homes

4 min read
A photo of an iRobot Roomba with an Amazon logo digitally added to it
Photo-illustration: iStockphoto/Amazon/IEEE Spectrum

This morning, Amazon and iRobot announced “a definitive merger agreement under which Amazon will acquire iRobot” for US $1.7 billion. The announcement was a surprise, to put it mildly, and we’ve barely had a chance to digest the news. But taking a look at what’s already known can still yield initial (if incomplete) answers as to why Amazon and iRobot want to team up—and whether the merger seems like a good idea.

Keep Reading ↓Show less

Automating Road Maintenance With LiDAR Technology

Team from SICK’s TiM$10K Challenge creates system to automate road maintenance

4 min read

Developed by a team of students at Worcester Polytechnic Institute as part of SICK's TiM$10K Challenge, their ROADGNAR system uses LiDAR to collect detailed data on the surface of a roadway.

SICK

This is a sponsored article brought to you by SICK Inc.

From advanced manufacturing to automated vehicles, engineers are using LiDAR to change the world as we know it. For the second year, students from across the country submitted projects to SICK's annual TiM$10K Challenge.

Keep Reading ↓Show less