Say Hello to Your New Robotic Wingman

This X-47B cruise configuration test footage may look like it belongs in a movie, but it's real, and it's spectacular

1 min read
Say Hello to Your New Robotic Wingman

Late last month, Northrop Grumman's ultra-futuristic X-47B unmanned combat air system (UCAS) performed its first test flight in "cruise mode;" that is, with its landing gear up in its typical flight configuration:

While a robot wingman does sound cool, there are probably two things which are incorrect about the term "wingman." One would be the "man" part: there's no flesh, blood, or other specific piece of humanity and/or masculinity inside. The other thing is that the X-37B is nobody's wingbot. It's entirely capable of running missions on its own, either controlled remotely by a human, or completely autonomously.

These missions will eventually include aircraft carrier take-offs and landings, refueling, reconnaissance, and attack missions, which will look uncannily like this:

It's pretty wild how the CG footage looks nearly identical to the real thing: we're totally living in the future right now.

[ Northrop Grumman ]

 

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less