The December 2022 issue of IEEE Spectrum is here!

Close bar

Satellites to Monitor UN Forest Protection Goals

Keeping carbon in forests will require streamlined satellite monitoring, researchers say

2 min read
Satellites to Monitor UN Forest Protection Goals
Landsat images of Chiapas, Mexico. Red indicates vegetation. The lower set contains the ReCover team's interpretation of forested area, in green.
VTT

Climate change negotiators agreed Sunday to monitor deforestation and to pay developing countries for keeping carbon trapped in forests. To measure just how much forest those countries are conserving, the United Nations Collaborative Program on Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (REDD+, to its friends) will rely on a complex system of satellite measurements and field checks. The agreement is a victory for advocates in the research and conservation communities. Yet they face a lot of work implementing the program.

Many countries and agencies already have experience conducting their own long-term monitoring, but the programs often differ in their goals and methods. That makes their data hard to compare. For example Brazil spent US $1.4 billion on a satellite system a decade ago for monitoring the Amazon, but some researchers accused it of being more of a drug-smuggling interdiction tool than a forestry tool. And the U.S. National Oceanic and Atmospheric Administration (NOAA ) has been monitoring wildfire-driven deforestation since the 1980s, but that is not suited to monitoring illegal logging because the two forms of deforestation occur on different timescales. Earlier this year, Nature published a commentary by researchers and satellite builders calling for a single international standard for forest-monitoring data.

A Finnish-led team has been working on a more technical forestry problem: how to combine the various bands of data satellites can collect. Optical data, such as that provided by the Landsat system, are common, but do not penetrate the clouds that often cover tropical forests. The team found that they could boost their ability to estimate forest cover and degradation by including radar data, they reported earlier this year in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. The project, called ReCover, collected satellite data in multiple bands from forests at five study sites and compared satellite-based interpretations to measurements of forest cover and quality on the ground. Their first-pass analyses achieved from 75 to 91 percent accuracy in forest classification, depending on the method, but combining methods should help them improve.

VTT

Photo: Researchers collect ground truth in Chiapas. VTT.

The Conversation (0)
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less