Blast Off! Satellite Captures Footage of Chinese Rocket Launch at Sea

The launch of an Earth observation satellite was watched by a predecessor already in orbit

2 min read
Photo showing liftoff from a mobile platform in the Yellow Sea.
The Long March 11 lifts off from a mobile platform in the Yellow Sea on 5 June.
Photo: China Academy of Launch Vehicle Technology (CALT)

Early on 5 June, China made the world’s first sea-based orbital launch in five years, sending a Long March 11 rocket toward orbit. Amazingly, the event was filmed by a satellite passing overhead.

The video shows, through cloud cover, the ignition and launch of a Long March 11 solid-fueled rocket from a specially converted platform in the Yellow Sea between China and the Korean Peninsula, at 04:06 UTC.

The spectacular footage was captured by a Jilin-1 video satellite. Though around 550 kilometers up and traveling at 7.9 kilometers per second, it was capable of ‘staring’ at the precise area in order to catch the dramatic event on the surface below.

Satellites in low earth orbit complete a lap around the planet once every 90 minutes or so, but don’t pass over the same areas each time, so the launch had to be coordinated with the satellite’s orbit in order to capture it.

“You need to make sure the launch is at the same time as the satellite pass,” says Jonathan McDowell, an astronomer at the Harvard-Smithsonian Center for Astrophysics. “That may require small orbit adjustments for the satellite, but doesn’t need to be super precise.”

The Jilin-1 Earth observation satellite was one of nine in orbit made by Changguang Satellite Technology Co. Ltd., a commercial offshoot from the Changchun Institute of Optics, Fine Mechanics, and Physics (CIOMP) in northeast China, owned by the Chinese Academy of Sciences. The Jilin constellation consists of optical and video Earth observation satellites that provide remote sensing data to clients for uses related to forestry, land use, shipping, natural resources, environment, and urban planning.

The company emerged after a 2014 Chinese government policy change to allow private capital into areas of the space sector, including small satellites and launch vehicles.

The government is facilitating the establishment of commercial and private space companies with the aim of developing new technology, driving innovation, and reducing costs for both civilian and military use, while also seeking to stimulate economic growth through space-related activities, including providing access to space, manufacturing satellites, or developing downstream applications, such as communications, geospatial products, and location-based services.

Aboard the 20.8-meter, 58-metric-ton Long March 11 were seven satellites, including another Jilin-1 high-resolution Earth observation satellite, taking the number of satellites in the nascent Jilin Earth observation constellation to ten.

The launch was China’s first attempt at a sea launch, a capability which will allow it to carry out launches at low latitudes, from which rockets heading into low-inclination orbits get a boost from the greater rotational speed of the Earth at the equator, helping them toward the 7.9 km/s velocity required to achieve orbit. This means reduced fuel requirements or the possibility of sending heavier payloads into orbit. Sea launches could also reduce the amount of rocket debris which falls on populated areas after launches from China’s inland satellite launch sites.

Views of the launch from the platform were also impressive, showing the Long March 11 being expelled from a launching tube before igniting in mid-air.

Updated to include more information about the Jilin satellite constellation.

The Conversation (0)
Two men fix metal rods to a gold-foiled satellite component in a warehouse/clean room environment

Technicians at Northrop Grumman Aerospace Systems facilities in Redondo Beach, Calif., work on a mockup of the JWST spacecraft bus—home of the observatory’s power, flight, data, and communications systems.

NASA

For a deep dive into the engineering behind the James Webb Space Telescope, see our collection of posts here.

When the James Webb Space Telescope (JWST) reveals its first images on 12 July, they will be the by-product of carefully crafted mirrors and scientific instruments. But all of its data-collecting prowess would be moot without the spacecraft’s communications subsystem.

The Webb’s comms aren’t flashy. Rather, the data and communication systems are designed to be incredibly, unquestionably dependable and reliable. And while some aspects of them are relatively new—it’s the first mission to use Ka-band frequencies for such high data rates so far from Earth, for example—above all else, JWST’s comms provide the foundation upon which JWST’s scientific endeavors sit.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}