Sarcos Exoskeleton Bringing Iron Man Suit Closer To Reality

The XOS 2 exoskeleton is designed to lighten a soldier's load and help the military reduce injuries. It also lets you pretend you're Tony Stark

2 min read
Sarcos exoskeleton
Photo: Sarcos

sarcos exoskeleton robot suit

Ever wanted to become Iron Man? Here's some good news: Sarcos recently said that its second-generation exoskeleton robot suit, XOS 2, is now five years away from production. IEEE Spectrum contributor Susan Karlin writes:

The wearable robotics suit augments the operator's strength by using a system of high-pressure hydraulics, sensors, actuators, and controllers to bear the weight of an object, while leaving its wearer agile enough to kick a soccer ball. It's also lighter, stronger, and more environmentally resistant, and it uses half the power of the company's first exoskeleton, XOS 1, which rolled out in 2008. The XOS 2 has been nicknamed the Iron Man suit in homage to the high-tech power suit in the comics and movies.

We first wrote about the Sarcos exoskeleton more than five years ago, when it was just a prototype developed as part of a DARPA program. Since then, Sarcos, now a division of U.S. defense contractor Raytheon, has significantly improved the device. The XOS 2 exoskeleton is designed to lighten a soldier's load and help the military reduce injuries. It also lets you pretend you're Tony Stark:

Several other companies and universities are developing exoskeletons to help not just soldiers but also the elderly and other people who might need assistance to walk, climb stairs, and carry things around.

Most notably, Japanese firm Cyberdyne has created a robot suit called Hybrid Assistive Limb, or HAL, which is commercially available in Japan. Automaton writer Evan Ackerman tested the HAL system at CES in January, becoming the first man in the United States to try out the device.

Then there's U.C. Berkelely spinoff Berkeley Bionics, which last year introduced its eLEGS robotic exoskeleton, a very impressive system that is helping paraplegics to stand up and walk. The company is currently testing eLEGS with a select group of rehab centers, hoping to make it available for purchase in the next year or so.

Image and video: Raytheon

The Conversation (0)
Image of a combine harvester within a wheat field, harvesting.

Russia is the world's largest wheat exporter, with 20 percent of the world's wheat trade. Combine harvesters that can drive themselves using technology from Russian company Cognitive Pilot are helping to make the harvesting process faster and more efficient.

Cognitive Pilot
Blue

The field of automated precision agriculture is based on one concept—autonomous driving technologies that guide vehicles through GPS navigation. Fifteen years ago, when high-accuracy GPS became available for civilian use, farmers thought things would be simple: Put a GPS receiver station at the edge of the field, configure a route for a tractor or a combine harvester, and off you go, dear robot!

Practice has shown, however, that this kind of carefree field cultivation is inefficient and dangerous. It works only in ideal fields, which are almost never encountered in real life. If there's a log or a rock in the field, or a couple of village paramours dozing in the rye under the sun, the tractor will run right over them. And not all countries have reliable satellite coverage—in agricultural markets like Kazakhstan, coverage can be unstable. This is why, if you want safe and efficient farming, you need to equip your vehicle with sensors and an artificial intelligence that can see and understand its surroundings instead of blindly following GPS navigation instructions.

Keep Reading ↓ Show less