The December 2022 issue of IEEE Spectrum is here!

Close bar

Running Hexapod Gets Fancy New Tunable Legs

EduBot’s tunable stiffness legs help it to adapt to be faster and more efficient on a variety of different terrain

2 min read
Running Hexapod Gets Fancy New Tunable Legs

You may not realize it, but you’ve got a lot of springiness going on in your legs. You may also not realize that you change that springiness depending on whether you’re running or walking, what surface you’re on, and whether or not you’re carrying stuff. Our bodies (and most animals) are able to dynamically adapt our legs and gaits to make us more efficient under changing conditions. Dynamic adaptation is something that robots are notoriously bad at, but EduBot, a son or cousin or something of the venerableRHex, has been experiment with six new “tunable” legs that allow it to adjust its gait on the fly.

EduBot’s legs are made out of carbon fiber, and by changing the location of a slider along the leg, the overall stiffness of each leg can be adjusted independently. Of course, once the stiffness of the legs changes, EduBot has to adapt its gait to match, which it does all by itself by analyzing its own speed, efficiency, and stability. A bunch of different experiments were performed to help the robot learn what leg stiffnesses and gaits produced the most desirable movement patterns on different surfaces and while carrying different loads, and generally the robot was able to figure out what worked best within 70 tries worth of experimentally fiddling with its own programming. I say “generally,” because sometimes it took longer, and because watching the robot failing to use the correct gait is pretty funny:

Overall, these experiments have shown that EduBot runs fastest and most efficiently with stiffer legs, but that things can change on softer surfaces (say, grass, or a shaggy carpet) or with payloads, indicating that adaptive and dynamic leg compliance really would be a useful thing to have on a robot, despite the added complexity. Next up will be teaching the robot to adjust its legs on the fly, and it’ll be interesting to see how this technology might benefit otherrobots (or even humans) with similar limbs.

EduBot’s new legs were presented in an ICRA paper entitled “Experimental Investigations into the Role of Passive Variable Compliant Legs for Dynamic Robotic Locomotion,” by Kevin C. Galloway, Jonathan E. Clark, Mark Yim, and Daniel E. Koditschek, from Harvard University, Florida A&M, and the University of Pennsylvania respectively.

[ EduBot ]

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less