Rovers Will Unroll a Telescope on the Moon’s Far Side

Astronomers need a quiet place to observe the cosmic dawn

2 min read
Illustration of a rover laying down flexible antenna on the lunar surface.
Illustration: Peter Sanitra

Illustration: Peter Sanitra

The far side of the moon offers a unique opportunity to radio astronomers: an observatory built there could peer into the early universe, shielded from electromagnetic interference from Earth.

For decades, astronomers have gazed up at the moon and dreamed about what they would do with its most unusual real estate. Because the moon is gravitationally locked to our planet, the same side of the moon always faces us. That means the lunar far side is the one place in the solar system where you can never see Earth—or, from a radio astronomer’s point of view, the one place where you can’t hear Earth. It may therefore be the ideal location for a radio telescope, as the receiver would be shielded by the bulk of the moon from both human-made electromagnetic noise and emissions from natural occurrences like Earth’s auroras.

Early plans for far-side radio observatories included telescopes that would use a wide range of frequencies and study many different phenomena. But as the years rolled by, ground- and satellite-based telescopes improved, and the scientific rationale for such lunar observatories weakened. With one exception: A far-side telescope would still be best for observing phenomena that can be detected only at low frequencies, which in the radio astronomy game means below 100 megahertz. Existing telescopes run into trouble below that threshold, when Earth’s ionosphere, radio interference, and ground effects begin to play havoc with observations; by 30 MHz, ground-based observations are precluded.

In recent years, scientific interest in those low frequencies has exploded. Understanding the very early universe could be the “killer app” for a far-side radio observatory, says Jack Burns, an astrophysics professor at the University of Colorado and the director of the NASA-funded Network for Exploration and Space Science. After the initial glow of the big bang faded, no new light came into the universe until the first stars formed. Studying this “cosmic dawn [PDF],” when the first stars, galaxies, and black holes formed, means looking at frequencies between 10 and 50 MHz, Burns says; this is where signature emissions from hydrogen are to be found, redshifted to low frequencies by the expansion of the universe.

With preliminary funding from NASA, Burns is developing a satellite mission that will orbit the moon and observe the early universe while it travels across the far side. But to take the next step scientifically requires a far larger array with thousands of antennas. That’s not practical in orbit, says Burns, but it is feasible on the far side. “The lunar surface is stable,” he says. “You just put these things down. They stay where they need to be.”

This article appears in the July 2019 print issue as “The View From the Far Side.”

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Converting Coal Power Plants to Nuclear Gains Steam

A U.S. Department of Energy report identifies over 300 coal plants that could be swapped over

3 min read
illustration of a building concept

This illustration shows TerraPower’s Wyoming project, which aims to retrofit an existing coal plant with a sodium fast reactor.

TerraPower

On a planet aspiring to become carbon neutral, the once-stalwart coal power plant is an emerging anachronism.

It is true that, in much of the developing world, coal-fired capacity continues to grow. But in every corner of the globe, political and financial pressures are mounting to bury coal in the past. In the United States, coal’s share of electricity generation has plummeted since its early 2000s peak; 28 percent of U.S. coal plants are planned to shutter by 2035.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Strange Topological Physics Could Help Enable 6G Tech

Topological chips can enable on-chip data rates of 160 gigabits per second

3 min read
A pattern of red triangles with some that are yellow

A new silicon device can help control terahertz communications on chips.

Nanyang Technological University/Nature Communications

The next generation of wireless communications, 6G, will likely rely on terahertz rays to help reach unprecedented speeds. Now research suggests that unusual topological physics may help control terahertz radiation on chips for 6G applications.

Terahertz waves (also called submillimeter radiation or far-infrared light) fall between optical waves and microwaves on the electromagnetic spectrum. Ranging in frequency from 0.1 to 10 terahertz, these waves could be key to future 6G wireless networks.

Keep Reading ↓Show less

Take the Lead on Satellite Design Using Digital Engineering

Learn how to accelerate your satellite design process and reduce risk and costs with model-based engineering methods

1 min read
Keysight
Keysight

Win the race to design and deploy satellite technologies and systems. Learn how new digital engineering techniques can accelerate development and reduce your risk and costs. Download this free whitepaper now!

Our white paper covers:

Keep Reading ↓Show less