The February 2023 issue of IEEE Spectrum is here!

Close bar

Rovers Will Unroll a Telescope on the Moon’s Far Side

Astronomers need a quiet place to observe the cosmic dawn

2 min read
Illustration of a rover laying down flexible antenna on the lunar surface.
Illustration: Peter Sanitra

Illustration: Peter Sanitra

The far side of the moon offers a unique opportunity to radio astronomers: an observatory built there could peer into the early universe, shielded from electromagnetic interference from Earth.

For decades, astronomers have gazed up at the moon and dreamed about what they would do with its most unusual real estate. Because the moon is gravitationally locked to our planet, the same side of the moon always faces us. That means the lunar far side is the one place in the solar system where you can never see Earth—or, from a radio astronomer’s point of view, the one place where you can’t hear Earth. It may therefore be the ideal location for a radio telescope, as the receiver would be shielded by the bulk of the moon from both human-made electromagnetic noise and emissions from natural occurrences like Earth’s auroras.

Early plans for far-side radio observatories included telescopes that would use a wide range of frequencies and study many different phenomena. But as the years rolled by, ground- and satellite-based telescopes improved, and the scientific rationale for such lunar observatories weakened. With one exception: A far-side telescope would still be best for observing phenomena that can be detected only at low frequencies, which in the radio astronomy game means below 100 megahertz. Existing telescopes run into trouble below that threshold, when Earth’s ionosphere, radio interference, and ground effects begin to play havoc with observations; by 30 MHz, ground-based observations are precluded.

In recent years, scientific interest in those low frequencies has exploded. Understanding the very early universe could be the “killer app” for a far-side radio observatory, says Jack Burns, an astrophysics professor at the University of Colorado and the director of the NASA-funded Network for Exploration and Space Science. After the initial glow of the big bang faded, no new light came into the universe until the first stars formed. Studying this “cosmic dawn [PDF],” when the first stars, galaxies, and black holes formed, means looking at frequencies between 10 and 50 MHz, Burns says; this is where signature emissions from hydrogen are to be found, redshifted to low frequencies by the expansion of the universe.

With preliminary funding from NASA, Burns is developing a satellite mission that will orbit the moon and observe the early universe while it travels across the far side. But to take the next step scientifically requires a far larger array with thousands of antennas. That’s not practical in orbit, says Burns, but it is feasible on the far side. “The lunar surface is stable,” he says. “You just put these things down. They stay where they need to be.”

This article appears in the July 2019 print issue as “The View From the Far Side.”

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The Aftershocks of the EV Transition Could Be Ugly

To avoid unintended consequences, bring realism to the table

10 min read
CEO of Dodge Brand standing on a podium next to a Dodge Charger Daytone SRT concept all-electric muscle car. Behind him a giant screen displaying the sentence: The Rules Have Changed.

Tim Kuniskis, CEO of Dodge Brand, Stellantis, introduces the Dodge Charger Daytona SRT Concept all-electric muscle car on August 17, 2022 in Pontiac, Michigan.

Bill Pugliano/Getty Images

The introduction of any new system causes perturbations within the current operating environment, which in turn, create behavioral responses, some predictable, many not. As University of Michigan professor emeritus and student of system-human interactions John Leslie King observes “People find ways to use systems for their own benefit not anticipated by designers and developers. Their behavior might even be contradictory to hoped-for outcomes.”

“Change rides on the rails of what doesn’t change,” King notes, “including people being self-serving.”

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Fine-Tuning the Factory: Simulation App Helps Optimize Additive Manufacturing Facility

Additive manufacturing processes can provide rapid and customizable production of high-quality components

7 min read
Fine-Tuning the Factory: Simulation App Helps Optimize Additive Manufacturing Facility

An example of a part produced through the metal powder bed fusion process.

This sponsored article is brought to you by COMSOL.

History teaches that the Industrial Revolution began in England in the mid-18th century. While that era of sooty foundries and mills is long past, manufacturing remains essential — and challenging. One promising way to meet modern industrial challenges is by using additive manufacturing (AM) processes, such as powder bed fusion and other emerging techniques. To fulfill its promise of rapid, precise, and customizable production, AM demands more than just a retooling of factory equipment; it also calls for new approaches to factory operation and management.

Keep Reading ↓Show less
{"imageShortcodeIds":["32338242"]}