“Inspiring Technology: 34 Breakthroughs”: Download IEEE’s 140th anniversary book for FREE.

Close bar

Rocketeer Frank Malina’s Life as an Artist

Historian W. Patrick McCray tracks down Malina’s kinetic sculpture Cosmos to a locked storage room in Oxford

8 min read
Photo of Malina on ladder, creating "Cosmos" in the summer of 1965.
Photo: The Malina Family

Editor’s Note: In his 2014 articleFrank Malina: America’s Forgotten Rocketeer,” James L. Johnson explored the engineer’s pivotal role in establishing the early U.S. rocket program and founding the Jet Propulsion Laboratory. As the article notes, Malina’s life took an interesting turn in the 1950s, when he “cut loose from everything and became an artist.” Historian W. Patrick McCray picks up where that article left off, with this look into Malina’s later life as a professional artist.

imgThe rocketeer as a young man.Photo: JPL/NASA

Frank J. Malina had three careers. His first, the one he is best known for—but not nearly well enough—was as an aeronautical engineer. Although Werner von Braun received the press attention and Time magazine covers, it was the American-born Malina who researched and developed the U.S.’s first space-capable rockets. (M.G. Lord’s excellent book Astro Turf discusses the historical injustice of a former Nazi getting the attention while American Malina’s accomplishments were sidelined during the McCarthy era.)

Jules Verne’s classic book De la Terre à la Lune inspired Malina to think seriously about space exploration. He read the book in Czech when his family relocated from Texas back to Europe when he was a young teen. After returning to the United States, Malina attended Texas A&M as an undergraduate—he paid for his tuition, in part, by bugling reveille to the student body—before a graduate fellowship brought him to Caltech in 1934.

imgIn this 1936 photo, Malina (third from left) poses with other members of the Caltech rocket project. A rocket engine test stand is behind them.Photo: JPL/NASA

He stayed in Pasadena for 13 years, designing and building rockets and the motors that propelled them. The project started small—the original team is shown here—but driven by wartime concerns, expanded quickly into a multimillion-dollar effort employing scores of people.

While based at Caltech, Malina worked under the tutelage of Hungarian-born research engineer Theodore von Kármán, who became his close friend and business partner; the two of them helped start a soon-to-be-very-profitable company called Aerojet. The two engineers also started the Jet Propulsion Laboratory, with Malina serving briefly as the lab’s first director.

The apogee of Malina’s rocket career happened at White Sands Missile Range in New Mexico. The site was close to where Robert Goddard had once tested his rockets and, more ominously, only about 70 miles from where the U.S. Army had exploded the Trinity device three months earlier. Malina visited the Trinity site, in fact, soon after the test, and the experience sobered him about the realities of future wars.

imgMalina (right) with the WAC-Corporal in 1945.Photo: JPL/NASA

In October 1945 at White Sands, a yellow and black sounding rocket called the WAC-Corporal roared from a launch pad. (“WAC” stood for “without any control” or, because it was the “little sister” of the larger Corporal rocket, “Women’s Army Corps.”)

Radar tracked it as it soared to about 230,000 feet and escaped the immediate confines of the Earth’s atmosphere.

Despite his technical accomplishments and considerable military interest, the deepening ideological tensions of the Nuclear Age distressed Malina. Ironically, the success of Aerojet, catalyzed by Cold War funding and military demands, would also make him quite wealthy—freeing him to pursue other, more peaceful paths. In a few short years after 1946, he left Caltech, moved to Paris, got divorced, and remarried. A strong believer in international cooperation, Malina also joined the United Nations Educational, Scientific, and Cultural Organization (UNESCO), eventually becoming head of its Division of Scientific Research.

Malina could not escape the Cold War, however, and its McCarthy-era suspicions. He had colleagues at Caltech with pink, if not red, pasts, and his own FBI file was of considerable heft. Government harassment coupled with financial independence prompted him to quit the UNESCO post in 1953 and start a new career as an artist.

imgMalina in his studio, a few years after he turned to art full-time.Photo: The Malina Family

In this, Malina resembles another Frank: Frank Oppenheimer, younger brother of J. Robert Oppenheimer. Frank O’s encounters with the national hysteria state were much more severe. After losing his post at the University of Minnesota, the younger Oppenheimer wandered the wilderness, literally, before reinventing himself as the founder of the Exploratorium, an innovative art-science institution, in 1968.

Malina had long been interested in art. The son of two professional musicians, he put himself through school by sometimes doing engineering drawings. Malina started his new career with traditional painting and quickly secured a one-man show at a Paris gallery. Around 1955, with his enthusiasm about painting as a medium waning, he turned his attention to making light-based and kinetic art works. (See the catalog compiled by Fabrice Lapelletrie of Malina’s artwork.)

imgMalina in his studio, circa 1957.Photo: The Malina Family

Malina was especially keen to introduce material from science and technology, particularly space exploration and astronomy, into contemporary visual arts. Even his early forays into painting incorporated “shock waves and fluid flow and paintings of airplanes and rockets.” As he moved away from traditional art techniques, Malina spent considerable time experimenting with new ways to create novel visual effects. In the mid-1950s, for example, he worked with a French electronics student to create what he called his Lumidyne technique. He made his first pieces using it in 1956.

Lumidyne, which Malina described in scientific-like style in journal articles as well as U.S., French, and British patent applications, gave him a systematic approach to making art using movement and light. The Lumidyne system was based on several interrelated parts: Light bulbs and electric motors were fixed to a wooden backboard. There were moving parts, which Malina called “rotors,” made of Plexiglas that he painted and connected to a motor. Fixed pieces of Plexiglas—the “stators”—were also painted. These parts were sandwiched between the backboard and a diffuser screen that faced the viewer.

Here’s a video clip of Malina’s Vortex and 3 Molecules (1965):

When it was switched on, a shifting subtle effect was created by the painted parts moving slowly relative to the static pieces, with light shining through them. The title of a 1961 patent application describes the resulting visual effect with Malina’s characteristic terse style: “Lighted, Animated, and Everchanging Picture Arrangement.” As was the case with his other techniques, the titles and topics of his artworks using Lumidyne reflected his persistent engagement with scientific and space themes. The Arc, Orbiter, Sun Sparks, and Jodrell Bank are among the nearly 200 works Malina made using his Lumidyne system before he passed away in 1981.

In 1965, the flamboyant millionaire (and socialist member of Parliament) Robert Maxwell commissioned Malina to make a statement piece for the entrance lobby of his company, Pergamon Press, a fast-growing British publisher of scientific journals based in Oxford.

imgMalina creating Cosmos in the summer of 1965.Photo: The Malina Family

The result was a massive lumino-kinetic work Malina called Cosmos. Weighing several hundred pounds and measuring over 6.5 square meters, Cosmos commanded the attention of Pergamon’s visitors and staff.

Malina began crafting Cosmos with sketches in his Paris workshop in the spring of 1965. A video has even survived that captures the process. Aided by a few technical assistants—the whole team signed their names inside the piece—Malina completed Cosmos in early July.

imgA closeup of one of the rotors.Photo: W. Patrick McCray

Small electric motors slowly turned each of the painstakingly painted rotor parts, while 120 fluorescent tubes and light bulbs lit up the work. All of this was encased in a relatively thin wood and metal frame. When Malina had achieved the visual effects he wanted, the entire piece was disassembled and shipped to Oxford for a weeklong installation at the Pergamon building.

And it’s still there today.

In September 2015, I went to Oxford to see Malina’s Cosmos. It’s not an easy thing to do. Pergamon is no longer in business, Robert Maxwell is dead, and the building housing Cosmos is now part of Oxford Brookes University. The artwork resides in a small room, partitioned off from the original main lobby. It’s used—from what I could tell—as a storage place for the campus radio station.

Because the piece is in a locked room on a private campus, I needed help getting access. Roger Malina, Frank’s older son, put me in touch with Chris Jennings, an art professor at Brookes. Jennings knew the right people with the right keys, and after a heroic effort with little advance notice, he met me at the Brookes gate on a gray windy afternoon lightly whipped by rain.

imgCosmos, as seen from the inside.Photo: W. Patrick McCray

Imposing even when turned off, Cosmos is hardly recognizable at first as an artwork. An electrician from campus came to switch Cosmos on for us. The lights switched on, and immediately the many small electrical motors inside began to turn the painted rotors. For such a giant mechanical piece, it was surprisingly quiet. All I heard was the slight hum of fluorescent lights and an occasional click as one of the gears proved momentarily obstinate.

Frank Malina made Cosmos at the height of the Cold War–era space race. Gagarin and Shepard had flown four years earlier, and a satellite-based infrastructure was beginning to take shape. Astronomers were looking forward to an era of space telescopes that could observe across wavelengths inaccessible from Earth and with unparalleled resolution. This new techno-scientific activity meant that people were, as Malina wrote in 1966, “more conscious of the universe, both intellectually and visually” than at any other time since the Copernican Revolution. Malina imagined Cosmos as a reflection of a universe that he knew as neither static nor quiescent.

The controlled motion of light and color reflected a view of an orderly Cosmos—one knowable to humans who were slowly starting to explore it. Malina abstracted his design from celestial shapes, starting with the band of color at the bottom, which he intended to represent colors seen by astronauts when orbiting the Earth. Nine painted circular shapes represent the planets—Neil deGrasse Tyson & Co. hadn’t yet killed Pluto—which hover below an abstracted sun presented in slowly changing shades of red, white, and orange.

imgA detail from Cosmos.Photo: The Malina Family

Sitting between the sun and planets are three “nebulae,” executed in a manner similar to some of Malina’s earlier works: filaments of light moving back and forth. Finally, above the sun, are scattered star clusters that slowly oscillate and pulse—another theme from Malina’s prior pieces. The overall effect is elegant, continuous, yet stately motion and shifting color.

Malina wanted the piece to be an “expression of a ‘peaceful Cosmos,’ ” while noting, of course, that the universe is anything but. “Events of cataclysmic proportion are constantly occurring,” yet people were still willing to dare to “venture forth farther and farther” from the “planetary cradle,” he wrote. This profound shift in position and perspective was something that should challenge the artist. Either they would “find aesthetic significance” in explorations of space or “mock them in despair.”

We opened up Cosmos to inspect its interior. 1960s-era lights and switches share space with parts added during occasional repairs and upgrades. Malina had signed the various rotors and stators that he painted.

But their paint is beginning to flake and peel, presenting a challenge to the art conservator. A few of the rotors weren’t turning well.

imgThe author contemplates the artwork.Photo: W. Patrick McCray

The complexity of the artwork—an ensemble of gears, chains, lights, switches, fuses, and plastic disks, with wires running everywhere—surprised me. Compared with the quiet, contemplative mood the piece fosters, the inside of Cosmos is a very busy place.

Malina created Cosmos as a “silent almost static” panoramic view of the universe centered around our solar system. I stood in front of it for several minutes, watching the colors slowly form, dissolve, move, and shift. I took some last photos. And then, a flick of the switch and Cosmos was dark again.

About the Author

W. Patrick McCray (@LeapingRobot) is a historian of science and technology at the University of California, Santa Barbara. His books include Visioneers, Keep Watching the Skies!, and Giant Telescopes. This post originally appeared on the author’s blog, Leaping Robot.

The Conversation (0)