The July 2022 issue of IEEE Spectrum is here!

Close bar

Robots Podcast: How to Build Your Own UAV for 300 USD

The Robots Podcast interviews DIY Drones founder Chris Anderson

1 min read

A decade ago the term Unmanned Aerial Vehicle (UAV) was synonymous for expensive equipment, complex aerodynamics, and cruise-missile-type control algorithms. But since then, a rapid price decay in IMUs caused by the rise of mobile computing has slashed equipment costs. Today, open-source software like the Arduino environment and open-source hardware like the ArduPilot allow you and me to build our own UAV in a weekend for less than 300 USD.

Much of this progress is due to what has become the largest amateur UAV community and one of the largest robotics communities: DIY Drones. Founded by Chris Anderson, whose day job is Editor-in-Chief of WIRED, the site now has more than 12'000 members and covers all aspects of UAVs.

In its latest episode, the Robots podcast interviews Chris Anderson about DIY Drones. Anderson explains how to go about building a cheap UAV, why autonomous stabilization and navigation has become easy, the technical and legal aspects of flying your autonomous plane around the neighborhood, and the risk of putting UAV technology into the wrong hands. Anderson also talks about his experience with producing open source hardware and the economic challenges - and benefits - this brings about. To conclude, he shares some anecdotes on some of the crazy projects run on his site.

For more information head over to the Robots Podcast, head over to DIY Drones or directly read on about or tune in to the interview!

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓Show less