Mystery Robot Revealed: RoboDynamics Luna Is Fully Programmable Adult-Size Personal Robot

Remember this mystery robot? It’s called Luna, it’s from RoboDynamics, and we’re now allowed to tell you all about it

4 min read
Mystery Robot Revealed: RoboDynamics Luna Is Fully Programmable Adult-Size Personal Robot

robodynamics luna personal robot

That mystery robot that we’ve been teased about for months now, originally rumored to be something developed by either Apple or Google, is in fact a project by a company called RoboDynamics. It’s called Luna, it’s a personal robot designed for people to use at home, it’s fully programmable, and will start shipping later this year.

As of right now, the embargo has been lifted and we’re allowed to tell you more about Luna and how RoboDynamics, in Santa Monica, Calif., hopes that it’ll revolutionize robotics in the same way that the PC revolutionized computing and the iPhone and Android are revolutionizing mobile electronics.

Before we get to the overall concept, here’s a rundown of Luna’s hardware and software specs, which RoboDynamics says is subject to change:

Computer
Processor: Dual Core Atom 2 GHz
Graphics: nVidia 94000M
Storage capacity: 8 GB Flash, expandable to 32 GB
Wireless: Wi-Fi (802.11g), optional Bluetooth via Luna Expansion Port (LXP)
Cellular comm.: Optional 3G or 4G via Luna Expansion Port (LXP)
Operating system: LunaOS (includes Poky Linux, ROS, and other packages)
I/O
Display: 8" touchscreen capacitive LCD
Camera: 8-megapixel primary camera with digital zoom
Microphone: 3 microphone array with DSP front-end with sound localization
Speakers: Yes (no specs available yet)
Sensors: 10-bit wheel encoders, PrimeSense 3D Sensor
Expansion ports: Luna Expansion Ports (LXP) x 7 [Each LXP comprises standard USB Female Type A and 12 volt and 5 volt regulated power with mounting holes]
Power
Battery: 12 volt, 26 amp-hour - SLA
Battery life: Between 4-8 hours
Charge time: 4-8 hours for full charge
Dimensions
Size: Height: 5’2" (157 cm) - Base: 22" (56 cm)
Weight: 65 lbs (30 Kg)

robodynamics luna personal robot

Clearly, this is not some kind of fancy, futuristic new platform. It’s got a pretty good computer in it, with a pretty good graphics card. It’s got some pretty good sensors, pretty good mobility, and pretty good design. All very pretty good. So why get excited?

Because, at least in principle, Luna could do something that no other robot has been able to accomplish: bring a programmable, general-purpose robot to a vast number of home users and establish an ecosystem for developers to create and sell software that gives the robot more capabilities.

Let’s use the computer as an analogy. Starting with the Apple II (or thereabouts, our memory only goes back so far), it was possible to buy a computer system that would come out of the box offering immediate usefulness without requiring specialized technical knowledge. And that’s what made everybody want a computer: it would immediately make your life better, and furthermore, the ability to teach it new things makes it increasingly useful.

robodynamics luna personal robot

To take the analogy further, and to get closer to the idea behind Luna, think about the iPhone. You buy it because it makes phone calls and you can get the Internet on it, but that’s just the beginning. What makes the iPhone (and Android platforms) stand out from other phones is the fact that you can make it increasingly useful, thanks to the app store. And not just that, but making the iPhone useful by writing apps has become lucrative, which makes the iPhone itself more lucrative, and so on.

RoboDynamics CEO Fred Nikgohar and Luna Personal Robot

RoboDynamics CEO Fred Nikgohar [the guy in the suit, right] wants Luna to do for robotics what smartphones did for mobile computing. He argues that the robotics industry has failed to make home robots (beyond toys, kits, and vacuum cleaners) available to consumers, and that even open-source software platforms like Willow Garage’s ROS are still too hard for people without a PhD in robotics. He hopes that “a well-designed, open, and affordable personal robot will kickstart a rush of innovation.”

We applaud the idea, but we see some hurdles along the way. RoboDynamics had mentioned previously a price tag of around US $1,000, which would make Luna a very competitive offering. To put that in perspective, remember that a TurtleBot or a Bilibot will set you back $1,200. And they’re not five feet tall with touchscreens. But now RoboDynamics is saying that the $1,000 is a target price and that the initial model, to ship later this year, will sell for $3,000.

It’s still reasonable for the hardware you’re getting, but way above the psychologically appealing price point of $1,000, which would certainly entice a lot of people. So whether RoboDynamics will be able to bring the cost down is still uncertain.

Another issue is software. We haven’t had a chance to check out the robot’s Linux-based operating system, called LunaOS, and we haven’t seen Luna’s interface system, the SDK, and the Luna App Store that RoboDynamics says will be available. Software, perhaps even more than hardware, will be key to Luna’s success. If the robot ships with good apps, and more apps start to show up on the store, Luna’s appeal increases dramatically. But so far this is all a big question mark.

In the next few weeks, RoboDynamics plans to release more information about Luna’s first edition, as well as future models, prices, and availability (if you’re interested, go to their website and fill out the form). We’ll report back as soon as we have a chance to meet the robot in person and check out its full capabilities.

More photos:

robodynamics luna personal robot

robodynamics luna personal robot

robodynamics luna personal robot

robodynamics luna personal robot

robodynamics luna personal robot

robodynamics luna personal robot

Images: RoboDynamics

READ ALSO:

Mystery Robot To Be Officially Unveiled May 11
Fri, April 22, 2011

Blog Post: We can’t tell you much about this robot, except that come May 11, you might really, really want one

Weird French Robot Reeti Wants To Be Your Home Theater
Wed, March 30, 2011

Blog Post: This weird little robot from France is great at making funny faces, and may be good at other stuff, too... We’re just not quite sure what

Review: iRobot Scooba 230
Thu, March 24, 2011

Blog Post: We’ve got a hands-on review of iRobot’s brand new and very tiny Scooba 230 floor cleaning robot

 ‘ Blinky’ Short Film Now Online, Not Safe For Your Sanity
Tue, March 22, 2011

Blog Post: I can’t wait for my home to be filled with helpful robots, as long as they are absolutely nothing like “Blinky”

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

This article is part of our special report on AI, “The Great AI Reckoning.

"I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less