The July 2022 issue of IEEE Spectrum is here!

Close bar

Researchers Pencil In Graphene Transistors

Graphene's weird electrical properties allow for smallest transistor yet

3 min read

The little smudges you leave behind whenever you use a pencil could be the key ingredient of the next revolution in computer circuitry, according to experts around the globe. Part of what shears off from the graphite in a pencil is a substance known as graphene, a one-atom-thick crystal with remarkable electrical properties that may overcome the physical limits silicon faces as transistors shrink to ever-smaller sizes.

Silicon's remarkable run as ruler of the chip world may be nearing an end as engineers eventually lose the ability to make faster silicon transistors by making them smaller. In the hunt for what comes next, carbon nanotubes have gotten a big chunk of the attention, but if the current explosion of research activity is any indication, it may be graphene that wins in the end. This spring saw a flurry of breakthroughs surrounding graphene, culminating in the creation of what may be the smallest transistor ever made--one atom thick by 10 to 50 atoms wide.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

3 Ways 3D Chip Tech Is Upending Computing

AMD, Graphcore, and Intel show why the industry’s leading edge is going vertical

8 min read
Vertical
A stack of 3 images.  One of a chip, another is a group of chips and a single grey chip.
Intel; Graphcore; AMD
DarkBlue1

A crop of high-performance processors is showing that the new direction for continuing Moore’s Law is all about up. Each generation of processor needs to perform better than the last, and, at its most basic, that means integrating more logic onto the silicon. But there are two problems: One is that our ability to shrink transistors and the logic and memory blocks they make up is slowing down. The other is that chips have reached their size limits. Photolithography tools can pattern only an area of about 850 square millimeters, which is about the size of a top-of-the-line Nvidia GPU.

For a few years now, developers of systems-on-chips have begun to break up their ever-larger designs into smaller chiplets and link them together inside the same package to effectively increase the silicon area, among other advantages. In CPUs, these links have mostly been so-called 2.5D, where the chiplets are set beside each other and connected using short, dense interconnects. Momentum for this type of integration will likely only grow now that most of the major manufacturers have agreed on a 2.5D chiplet-to-chiplet communications standard.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}