The December 2022 issue of IEEE Spectrum is here!

Close bar

Renewable Europe: Wind Power in EU to Triple by 2020

Total European wind capacity to approach 230 gigawatts by end of the decade.

2 min read
Renewable Europe: Wind Power in EU to Triple by 2020

The European Wind Energy Association (EWEA) estimates that the wind energy capacity in the EU will nearly triple by 2020, bringing the total installed capacity up to about 230 gigawatts. At the end of 2010, the EU had about 84 GW installed.

If EWEA's "conservative estimates" prove correct, the EU will get about 16 percent of its total power supply from wind energy by the end of the decade. According to the EWEA press release today:

Electricity production from wind power is expected to increase from 182 Terawatt hours (TWh) or 5.5% of the total EU demand in 2010, to 581 TWh or 15.7% of the total demand in 2020. By 2020 the electricity production from wind energy will be equivalent to the total electricity consumption of all households in France, Germany, Poland, Spain and the United Kingdom together.

The biggest gains in wind power capacity are projected for Finland (9.6-fold increase), Poland (9.5-fold increase), and Bulgaria (8-fold increase), though none of these countries are currently among the leaders in absolute or proportional capacity. Denmark, which already gets about 25 percent of its power from wind, will see only a 1.6-fold increase, but this will bring the total to 38 percent of its power needs. Germany and Spain, which lead the way in absolute capacity, are also projected to less than 2-fold increases, but will arrive in 2020 at 17 percent and 27 percent of their total power supply, respectively.

One of the biggest growth sectors of the European renewables landscape -- and that which clearly sets it off from the United States -- is offshore wind. As of the end of June, the EU has 1,247 offshore wind turbines for an installed capacity of 3,294 MW; 101 offshore turbines were connected to the grid in just the first half of this year. The US, at last count, has zero.

(Image via Vattenfall/Flickr)

The Conversation (0)
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less